Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (8): 21-24    https://doi.org/10.11896/j.issn.1005-023X.2017.08.005
  材料研究 |
甲壳素纳米纤维增强明胶/壳聚糖复合膜的制备及性能研究*
黄大建, 马宗红, 马晨阳, 王新伟
兰州交通大学机电工程学院, 兰州 730070
Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber
HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei
School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070
下载:  全 文 ( PDF ) ( 1593KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过流延成膜法制备了不同甲壳素纳米纤维(CF)质量分数的CF/明胶(GA)/壳聚糖(CS)复合膜。利用透射电子显微镜(TEM)、扫描电子显微镜 (FE-SEM)、紫外-可见光谱 (UV-Vis)等对材料的结构与性质进行了研究。结果表明:低加入量CF在复合膜中分散较好,高加入量CF在复合膜中会形成团聚,CF与GA/CS之间有相对较好的相容性;随着CF含量增加,复合膜拉伸强度呈现先增加而后减小的趋势,而断裂伸长率则随着CF含量增加而持续降低;同时复合膜的水蒸气吸附率和水溶失率都随着CF含量的上升而降低。CF/GA/CS纳米复合膜表现出良好的透明性,较少CF的加入对材料透明度影响不大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄大建
马宗红
马晨阳
王新伟
关键词:  甲壳素纳米纤维  壳聚糖  明胶  力学性能  耐水性    
Abstract: Nanocomposite films were prepared by the solution casting method by introducing chitin nanofiber (CF) into gelatin (GA)/chitosan (CS) matrix. Several methods were used to characterize the prepared films including FE-SEM, TEM and UV-Vis. SEM images showed that CF could be well dispersed in GA/CS matrix at low loading, while higher CF loadings resulted in the aggregation of particles in the nanocomposites. The addition of CF caused remarkable increase in tensile strength (TS), which leads to improved tensile properties compared with the neat GA/CS film, but decreased elongation at break. In addition, water-resistance of films were enhanced by the CF. Furthermore, the introduction of CF barely affected light transmittance of the obtained nanocompo-site films in the range of visible light regions.
Key words:  chitin nanofiber    chitosan    gelatin    mechanical property    water-resistance
出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  TB324  
基金资助: 甘肃省自然科学基金(1506RJZA068);兰州交通大学校青年基金(2014016)
作者简介:  黄大建:男,1979年生,博士,副教授,主要研究方向为高分子复合材料 E-mail:huangdj2015@yeah.net
引用本文:    
黄大建, 马宗红, 马晨阳, 王新伟. 甲壳素纳米纤维增强明胶/壳聚糖复合膜的制备及性能研究*[J]. 《材料导报》期刊社, 2017, 31(8): 21-24.
HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber. Materials Reports, 2017, 31(8): 21-24.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.005  或          https://www.mater-rep.com/CN/Y2017/V31/I8/21
1 Vieira M G A, da Silva M A, dos Santos L O, et al. Natural-based plasticizers and biopolymer films:A review[J]. Eur Polym J,2011,47(3):254.
2 Wang J,Wang J, Zhang K, et al. Preparation and characterization of CST/CS/PVA/GEL blend membrane[J]. Mater Rev,2012,26(S1):274(in Chinese).
王晶,王江,张可喜,等.淀粉/壳聚糖/聚乙烯醇/明胶共混膜的制备及表征[J]. 材料导报,2012,26(专辑19):274.
3 Tongnuanchan P, Benjakul S, Prodpran T. Physico-chemical pro-perties, morphology and antioxidant activity of film from fish skin gelatin incorporated with root essential oils[J]. J Food Eng,2013,117(3):350.
4 Hosseini S F, et al. Preparation and functional properties of fish gelatin-chitosan blend edible films[J]. Food Chem,2013,136(3):1490.
5 He Bing,Zhang Shujun,Xin Zhiqiang,et al. Degradation of chitosan by hydrodynamic cavitation and H2O2 [J]. J Chongqing Univ Tech-nol: Nat Sci Ed,2014(11):52(in Chinese).
何冰,张淑君,信志强,等. 水力空化联合H2O2降解壳聚糖的研究[J].重庆理工大学学报:自然科学版,2014(11):52.
6 Chen C, Li D, Hu Q, et al. Properties of polymethyl methacrylate-based nanocomposites: Reinforced with ultra-long chitin nanofiber extracted from crab shells[J]. Mater Des,2014,56:1049.
7 Salaberria A M, Diaz R H, Labidi J, et al. Role of chitin nanocrystals and nanofibers on physical, mechanical and functional properties in thermoplastic starch films[J]. Food Hydrocolloid,2015,46:93.
8 Shankar S, Reddy J P, Rhim J W, et al. Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carra-geenan nanocomposite films[J]. Carbohydr Polym,2015,117:468.
9 Qin Y, Lu X, Sun N, et al. Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers[J]. Green Chem,2010,12(6):968.
10 Pereda M, Ponce A G, Marcovich N E, et al. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity[J]. Food Hydrocolloid,2011,25(5):1372.
11 Rubentheren V, Ward T A, Chee C Y, et al. Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker[J].Carbohydr Polym,2015,115:379.
12 Ma B, Qin A, et al. Structure and properties of chitin whisker reinforced chitosan membranes[J]. Int J Biol Macromol,2014,64:341.
13 Sionkowska A, Wisniewski M, Skopinska J, et al. Molecular inte-ractions in collagen and chitosan blends[J]. Biomaterials,2004,25(5):795.
14 Wu H, Liu C, Chen J, et al. Structure and properties of starch/α-zirconium phosphate nanocomposite films[J]. Carbohydr Polym,2009,77(2):358.
15 Ifuku S, Ikuta A, Egusa M, et al. Preparation of high-strength transparent chitosan film reinforced with surface-deacetylated chitin nanofibers[J]. Carbohydr polym,2013,98(1):1198.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed