Please wait a minute...
材料导报  2021, Vol. 35 Issue (11): 11119-11125    https://doi.org/10.11896/cldb.20010120
  金属与金属基复合材料 |
近室温磁制冷合金材料的研究进展及发展前景
李冬梅, 左定荣, 余鹏*
重庆师范大学物理与电子工程学院,光电功能材料重庆市重点实验室,重庆 401331
Progress and Prospect of Magnetic Refrigeration Alloys Near Room Temperature
LI Dongmei, ZUO Dingrong, YU Peng*
Photoelectric Functional Materials Key Laboratory of Chongqing, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
下载:  全 文 ( PDF ) ( 2746KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磁制冷技术是一种高效节能、绿色环保、可靠性强的先进制冷技术,其核心原理是磁性材料的磁热效应,即磁制冷工质等温磁化时向外界放出热量,绝热退磁时从外界吸收热量。理论上所有的磁性材料都具有磁热效应,但只有极少数具有显著磁热效应的磁性材料可用于磁制冷。因此,研发具有较大磁热效应的磁制冷工质是决定磁致冷技术能否得到应用和推广的关键因素。经过几十年的发展,人们陆续发现了许多性能优异的磁制冷材料,推动和促进了磁制冷技术的发展。
目前,磁制冷技术在20 K以下的低温区已经得到了较为广泛的应用,如液氦的制备、低温物理研究以及航空航天等领域都采用了磁制冷技术。低温区的磁制冷材料通常为顺磁状态,其构型熵可以忽略不计,但随着温度的升高,用于低温区磁制冷的顺磁材料的晶格振动变大,构型熵对磁制冷系统的影响不可忽略,即传统的顺磁态磁制冷工质在近室温区已不再适用,因此研发近室温区的磁制冷材料具有重要意义。近20年间,国内外研究者对近室温区磁制冷材料进行了大量研究并取得了许多重要成果,如以Gd(SiGe)4、La(FeSi)13、MnAs合金和NiMn基Heusler合金等为代表的具有优异磁热效应的一级相变磁制冷材料,这些合金的磁热效应通常是由结构相变与磁相变的叠加引起的,但常常伴有较大的热滞与磁滞损耗,进而会大幅度降低磁制冷的效率。除了一级相变磁制冷材料外,还有稀土Gd及其化合物、Gd基非晶态合金等具有二级磁相变的近室温磁制冷材料。其中,Gd基非晶态合金具有制冷温区宽、涡流损耗低、磁滞低、成分范围宽、耐腐蚀和易于加工等优点,其较宽的制冷温区特别适合室温埃里克森磁制冷循环,具有广阔的应用前景。
本文简要介绍了磁热效应的原理以及磁制冷技术的发展,重点介绍了近室温磁制冷材料的磁热性能和最新研究进展,包括Gd(SiGe)4、La(FeSi)13、MnAs合金、NiMn基Heusler合金等一级相变磁制冷材料和具有二级磁相变的Gd基非晶态合金,并分析了它们作为磁制冷材料的优点和存在不足,讨论了各系材料未来的发展方向和趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李冬梅
左定荣
余鹏
关键词:  近室温磁制冷  磁热效应  磁制冷材料  磁熵变  非晶态合金    
Abstract: Magnetic refrigeration technology is an advanced refrigeration technology with high efficiency, energy saving, environmental protection, and strong reliability. The core principle of the magnetocaloric effect is the physical phenomenon of that heat was released to the outside during isothermal magnetization and absorbed from the outside during adiabatic demagnetization of the magnetic refrigerant. Theoretically, all magnetic materials have the magnetocaloric effect. However, only a few magnetic materials with significant magnetocaloric effect can be used in magnetic refrigeration. Therefore, the research and development of magnetic refrigeration working medium with a larger magnetocaloric effect is the key factor to determine whether the magnetic refrigeration technology can be applied and promoted. After decades of development, many excellent magnetic refrigeration materials have been found, which promotes the development of magnetic refrigeration technology.
At present, the magnetic refrigeration technology has been widely used, such as in the preparation of liquid Helium, low temperature physical research, and aerospace engineering, in the low temperature region below 20 K. The configurational entropy of magnetic refrigeration materials can be ignored in low temperature region as they are usually in paramagnetic state. However, with the temperature increasing, the influence of configurational entropy on the magnetic refrigeration cannot be ignored attributed to the lattice vibration of the paramagnetic materials becomes larger. So, the traditional paramagnetic refrigerant is no longer applicable near room temperature. Therefore, it is important to develop magnetic refrigeration materials near room temperature. In the past two decades, lots of studies on magnetic refrigeration materials near room temperature have carried out, such as the magnetic refrigeration materialsincluding Gd(SiGe)4, La(FeSi)13, MnAs alloy, and NiMn based Heusler alloy, and all those alloys present the first-order phase change and excellent magnetocaloric effect. The magnetocaloric effect of these alloys are usually caused by the superposition of structural phase change and magnetic phase change, but often accompanied by the large thermal and magnetic hysteresis, which will greatly reduce the efficiency of magnetic refrigeration. In addition to the magnetic refrigeration materials with first-order phase change, there are also magnetic refrigeration materials present second-order magnetic phase change,such as rare earth Gd and its compounds, Gd based amorphous alloys, and other magnetic refrigeration materials near room temperature. Among them, Gd based amorphous alloys have many advantages, such as a wide refrigeration temperature range, low eddy current loss, low hysteresis, wide composition range, corrosion resistance, and easy processing. Their wide refrigeration temperature range is particularly suitable for room temperature Ericsson cycle of magnetic refrigeration and has a broad application prospect.
In this paper, the principle of magnetocaloric effect and the development of magnetic refrigeration technology are briefly introduced. The magnetocaloric properties and the latest research progress of magnetic refrigeration materials near room temperature are mainly introduced, including the magnetic refrigeration materials with first-order phase change, such as Gd(SiGe)4, La(FeSi)13, MnAs alloy, and NiMn based Heusler alloy and the Gd based amorphous alloy with second-order magnetic phase change. Their advantages as magnetic refrigeration materials are analyzed and the future development trend of each series of magnetic refrigeration materials is discussed.
Key words:  magnetic refrigeration near room temperature    magnetocaloric effect    magnetic refrigeration material    magnetic entropy change    amorphous alloy
               出版日期:  2021-06-10      发布日期:  2021-06-25
ZTFLH:  TM271  
基金资助: 重庆市基础研究与前沿探索项目(cstc2018jcyjAX0329; cstc2018jcyjAX0444); 重庆市教委科学技术研究重点项目(KJZD-K201900501)
通讯作者:  *pengyu@cqnu.edu.cn   
作者简介:  李冬梅,重庆师范大学物理与电子工程学院副教授。2017年6月毕业于吉林大学超硬材料国家重点实验室,获理学博士学位。主要从事先进金属材料的制备及磁热性能的研究工作。余鹏,博士,教授,重庆市巴渝学者特聘教授,重庆市学术技术带头人,重庆市“新型能源转化材料与器件”创新团队负责人。主要从事非晶态合金、先进金属材料、复合材料的制备与力学、磁热性能的研究工作。科研成果两次获得重庆市自然科学二等奖,2019年获重庆市创新争先奖先进个人。
引用本文:    
李冬梅, 左定荣, 余鹏. 近室温磁制冷合金材料的研究进展及发展前景[J]. 材料导报, 2021, 35(11): 11119-11125.
LI Dongmei, ZUO Dingrong, YU Peng. Progress and Prospect of Magnetic Refrigeration Alloys Near Room Temperature. Materials Reports, 2021, 35(11): 11119-11125.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010120  或          http://www.mater-rep.com/CN/Y2021/V35/I11/11119
1 Yan M, Peng X L. Fundamentals of Magnetism and Magnetic Materials,Zhejiang University Press, China,2006(in Chinese).
严密,彭晓领.磁学基础与磁性材料,浙江大学出版社,2006.
2 Warburg E. Annalen der Physik,1881,249(5),141.
3 Debye P. Annalen der Physik,1926,386(25),1154.
4 Pecharsky V K. Physical Review Letters,1997,78(23),4494.
5 Pecharsky V K, Gschneidner K A. Applied Physics Letters,1997,70(24),3299.
6 Gschneidner K A, Pecharsky V K,Tsokol A O. Reports on Progress in Physics,2005,68(6),1479.
7 Pecharsky A O, Gschneidner K A,Pecharsky V K. Journal of Applied Physics,2003,93(8),4722.
8 Shull R D, Provenzano V, Shapiro A J, et al. Journal of Applied Physics,2006,99(8),08k908.
9 Franco V, Blázquez J N S, Ipus J J, et al. Progress in Materials Science,2018,93,112.
10 Podmilj?ak B, McGuiness P, Miklavic ˙ B, et al. Journal of Applied Phy?sics,2009,105(7),07a941.
11 Nikitin S A, Smirnov A V, Ovchenkova I A, et al. Journal of Applied Physics,2018,124(8),8.
12 Gao Q, Yu B F, Wang C F. et al. International Journal of Refrigeration,2006,29(8),1274.
13 Hu F X, Shen B G, Sun J R. et al. Applied Physics Letters,2001,78(23),3675.
14 Hu F X, Shen B G, Sun J R, et al. Applied Physics Letters,2002,80(5),826.
15 Zheng X Q, Shen J, Hu F X, et al. Acta Physica Sinica,2016,65(21),7(in Chinese).
郑新奇,沈俊,胡凤霞,等.物理学报,2016,65(21),7.
16 Chen X, Chen Y G,Tang Y B. Bulletin of Materials Science,2012,35(2),175.
17 Wang C L, Long Y . Journal of Applied Physics,2013,113(14),143902.
18 Gao B, Hu F X, Wang J, et al. Journal of Applied Physics,2009,105(7),07a916.
19 Fujieda S, Fujita A,Fukamichi K. Journal of Magnetism and Magnetic Materials,2007,310,e1004.
20 Jia L, Sun J R, Shen J, et al. Applied Physics Letters,2008,92(18),182503.
21 Chen X, Chen Y G, Tang Y B, et al. Rare Metals,2016,35(9),691.
22 Shen J, Wang F, Zhao J L, et al. Journal of Applied Physics,2010,107(9),09a909.
23 Zhang H, Shen B G, Xu Z Y, et al. Journal of Applied Physics,2012,111(7),07a909.
24 Fujita A, Fujieda S, Hasegawa Y, et al. Physical Review B,2003,67(10),104416.
25 Zhao J L, Shen J, Zhang H, et al. Journal of Alloys and Compounds,2012,520,277.
26 Zhong X C, Feng X L, Huang X W, et al. Journal of Alloys and Compounds,2016,685,913.
27 Norizan Y N A, Din M F M, Zamri W F H W, et al. AIP Conference Proceedings,2018,1930(1),020038.
28 Bez H N, Eggert B G F, Lozano J A, et al. Journal of Magnetism and Magnetic Materials,2015,386,125.
29 Wada H, Tanabe Y. Applied Physics Letters,2001,79(20),3302.
30 Mira J, Rivadulla F, Rivas J, et al. Physical Review Letters,2003,90(9),4.
31 Gama S, Coelho A A, de Campos A, et al. Physical Review Letters,2004,93(23),4.
32 De Campos A, Rocco D L, Carvalho A M G, et al. Nature Materials,2006,5(10),802.
33 Liu G J, Sun J R, Shen J, et al. Applied Physics Letters,2007,90(3),032507.
34 Wada H, Morikawa T, Taniguchi K, et al. Physica B: Condensed Matter,2003,328(1?2),114.
35 Sun N K, Cui W B, Li D, et al. Applied Physics Letters,2008,92(7),3.
36 Cui W B, Liu W, Liu X H, et al. Journal of Alloys and Compounds,2009,479(1?2),189.
37 Gu Z F, Xu C F, Hong L J, et al. Journal of Materials Science?Materials in Electronics,2017,28(9),6806.
38 Heusler F, Stark W, Haupt E. Verhandlungen der Deutschen Physikalis?chen Gesellschaft,1903,5,219.
39 Heusler F, Richarz F. Zeitschrift Für Anorganische Chemie Z Anorg Chem,1904,61,265.
40 Bachaga T, Zhang J, Khitouni M, et al. International Journal of Advanced Manufacturing Technology,2019,103(5?8),2761.
41 Hu F E, Cao Y M. The Chinese Journal of Nonferrous Metals,2019,29(12),2793.
42 Hu F X, Shen B G,Sun J R. Applied Physics Letters,2000,76(23),3460.
43 Krenke T, Duman E, Acet M, et al. Nature Materials,2005,4(6),450.
44 Du J, Zheng Q, Ren W J, et al. Journal of Physics D: Applied Physics,2007,40(18),5523.
45 Mejía C S, Gomes A M, Oliveira L A S. Journal of Applied Physics,2012,111(7),07a923.
46 Cakir A, Acet M. Aip Advances,2017,7(5),4.
47 Li Z B, Jiang Y W, Li Z Z, et al. IUCrJ,2018,5(1),54.
48 Yi L Z, Zhang T F, Zhang B B, et al. Journal of Magnetism and Magne?tic Materials,2020,495,7.
49 Sakon T, Nagashio H, Sasaki K, et al. Journal of Alloys and Compounds,2013,577,S376.
50 Li Z Z, Li Z B, Yang B, et al. Scripta Materialia,2018,151,61.
51 Roshnee S, Raj K D M, Arvindha B D, et al. Journal of Magnetism and Magnetic Materials,2013,347,95.
52 Jayaraman T V, Boone L,Shield J E. Journal of Magnetism and Magnetic Materials,2013,345,153.
53 Jayaraman T V, Boone L,Shield J E. Journal of Magnetism and Magnetic Materials,2014,363,201.
54 Lu S, Tang M B,Xia L. Physica B: Condensed Matter,2011,406(18),3398.
55 Zhang J, Shan G G, Li J, et al. Journal of Alloys and Compounds,2018,747,636.
56 Zhang J L, Zheng Z G, Cao W H, et al. Journal of Magnetism and Magnetic Materials,2013,326,157.
57 Zhong X C, Tang P F, Liu Z W, et al. Journal of Alloys and Compounds,2011,509(24),6889.
58 Luo Q, Wang W H. Journal of Non?Crystalline Solids,2009,355(13),759.
59 Brown G V. Journal of Applied Physics,1976,47(8),3673.
60 Shen J, Wu J F,Sun J R. Journal of Applied Physics,2009,106(8),083902.
61 Dong Q Y, Shen B G, Chen J, et al. Journal of Applied Physics,2009,105(5),053908.
62 Du J, Zheng Q, Li Y B, et al. Journal of Applied Physics,2008,103(2),023918.
63 Liu G L, Zhao D Q, Bai H Y, et al. Journal of Physics D: Applied Phy?sics,2016,49(5),055004.
64 Tang B Z, Yu P, Ding D, et al. Journal of Magnetism and Magnetic Materials,2017,424,275.
65 Xia L, Wu C, Chen S H, et al. AIP Advances,2015,5(9),097122.
66 Li Z, Ding D,Xia L. Intermetallics,2017,86,11.
67 Luo Q, Shen J. Intermetallics,2018,92,79.
68 Ma L Y, Gan Li H, Xia L, et al. International Journal of Modern Physics B,2018,32(8),1850085.
69 Schwarz B, Podmilsak B, Mattern N, et al. Journal of Magnetism and Magnetic Materials,2010,322(16),2298.
70 Shen H X, Xing D W, Sánchez Llamazares J L, et al. Applied Physics Letters,2016,108(9),092403.
71 Shishkin D A, Volegov A S,Baranov N V. Journal of Non?Crystalline Solids,2018,498,130.
72 Zhong X C, Yu H Y, Liu Z W, et al. Current Applied Physics,2018,18(11),1289.
73 Zhang H Y, Ouyang J T, Ding D, et al. Journal of Alloys and Compounds,2018,769,186.
74 Xue L, Li J, Yang W M, et al. Intermetallics,2018,93,67.
75 Qian S N, Dong C, Liu T Y, et al. Journal of Materials Science & Technology,2018,34(7),1132.
76 Zhong X C, Huang X W, Shen X Y, et al. Journal of Alloys and Compounds,2016,682,476.
77 Xia L, Chan K C, Tang M B, et al. Journal of Materials Science,2015,50(3),1333.
78 Yuan F, Li Q,Shen B L. Journal of Applied Physics,2012,111(7),07a937.
79 Uporov S, Bykov V,Uporova N. Journal of Non?Crystalline Solids,2019,521,5.
80 Shen H X, Luo L, Xing D W, et al. Physica Status Solidi a?Applications and Materials Science,2019,216(16),5.
81 Luo Q, Shen J. Journal of Iron and Steel Research International,2018,25(6),619.
82 Huang L W, Tang B Z, Ding D, et al. Journal of Alloys and Compounds,2019,811,4.
83 Tang B Z, Yu P, Ding D, et al. Journal of Magnetism and Magnetic Materials,2017,424,275.
84 Wang Z W, Yu P, Cui Y T, et al. Journal of Alloys and Compounds,2016,658,598.
85 Yu P, Chen L S,Xia L. Journal of Non?Crystalline Solids,2018,493,82.
86 Zhong X C, Shen X Y, Mo H Y, et al. Materials Today Communications,2018,14,22.
87 Hadimani R L, Silva J H B, Pereira A M, et al. Appllied Physics Letters,2015,106,032402.
88 Hernando B, Llamazares J L S, Santos J D, et al. Appllied Physics Letters,2008,92,132507.
89 Shen H, Wang H, Liu J, et al. Journal of Alloys an Compounds,2014,603,167.
[1] 丁燕红, 薛鹏鹤, 李岩, 马叙. 自由面平整化非晶合金Fe67Co18Si11B4的软磁性能[J]. 材料导报, 2019, 33(4): 586-589.
[2] 李旺昌, 王兆佳, 李晶鑫, 车声雷. 用于高频电机磁芯的金属软磁复合材料研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1139-1144.
[3] 李庆达, 郭建永, 胡军, 王宏立, 连法增, 陆曹卫. 通过改进的制备工艺提高FINEMET纳米晶磁粉芯的磁性能及其机理*[J]. 《材料导报》期刊社, 2017, 31(16): 26-30.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed