Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 20120250-7    https://doi.org/10.11896/cldb.20120250
  金属与金属基复合材料 |
预制裂纹对等离子体淬火车轮材料磨损行为的影响
李爽, 张青松, 戴光泽
西南交通大学材料科学与工程学院,成都 610031
Effect of Pre-cracks on Wear Behavior of Railway Wheel Material Quenched by Plasma
LI Shuang, ZHANG Qingsong, DAI Guangze
School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 11502KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用层流等离子体射流对轮轨试样进行表面点状淬火处理,采用电火花加工方法在车轮试样表面预制裂纹,基于MJP-30滚动接触疲劳试验机进行磨损试验,研究了表面预制裂纹对车轮试样淬火前后磨损行为的影响。结果表明:预制裂纹导致未淬火车轮试样出现局部严重磨损区,其磨损量显著增加,而淬火试样的磨损量轻微增加;磨损试验后,预制裂纹在未淬火试样中闭合,而在淬火试样中不闭合;在淬火试样中,浅预制裂纹宽度扩大并在表层出现马氏体塑性变形和剥落现象,而深预制裂纹宽度略微收缩且表层无马氏体塑性变形与剥落现象;淬火试样的预制裂纹诱发大角度裂纹贯穿整个淬火区,并沿着淬火区与基体交界面扩展,显著增加了淬火区大块剥离的隐患。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李爽
张青松
戴光泽
关键词:  预制裂纹  车轮材料  等离子体淬火  磨损行为  裂纹扩展    
Abstract: The surface of wheel and rail rollers was quenched by laminar plasma, and the pre-cracks were manufactured on the surface of wheel rollers. Based on rolling contact wear tests carried out on the MJP-30 test machine, the effect of pre-cracks on wear behavior of wheel rollers quenched by plasma was studied. The results show that the pre-cracks lead to severe wear zones in the part of untreated wheel rollers, increa-sing the mass loss of untreated rollers significantly, increasing the mass of quenched rollers slightly. The pre-cracks are closed in the untreated wheel rollers after wear. However, they are not closed in the quenched rollers. For the quenched wheel rollers, the width of shallow pre-crack expands with martensite plastic deformation and spalling of the surface, while the width of deep pre-crack shrinks slightly and there is no martensite plastic deformation or spalling of the surface. The pre-crack of quenched rollers induces large angle cracks throughout the quenched zone, and then they propagate along the interface between the quenched zone and the matrix, which significantly increases the block spalling risk of the quenched zone.
Key words:  pre-crack    wheel material    plasma quenching    wear behavior    crack propagation
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  TH117.1  
基金资助: 中国铁路总公司科技研发计划(2016J007-H)
通讯作者:  g.dai@163.com   
作者简介:  李爽,2018年6月毕业于西南交通大学,获得工学学士学位。2018年9月至今,在西南交通大学攻读硕士学位,主要从事轮轨材料表面强化领域的研究。
戴光泽,西南交通大学材料科学与工程学院,教授。1998年毕业于日本京都工艺纤维大学,获工学博士学位。1999年12月加入西南交通大学材料科学与工程学院至今,主要从事材料服役行为及强度评价等领域的研究。
引用本文:    
李爽, 张青松, 戴光泽. 预制裂纹对等离子体淬火车轮材料磨损行为的影响[J]. 材料导报, 2022, 36(5): 20120250-7.
LI Shuang, ZHANG Qingsong, DAI Guangze. Effect of Pre-cracks on Wear Behavior of Railway Wheel Material Quenched by Plasma. Materials Reports, 2022, 36(5): 20120250-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120250  或          http://www.mater-rep.com/CN/Y2022/V36/I5/20120250
1 Zhong W, Ren J W, Wang W J, et al. Tribology-Materials, Surfaces & Interfaces, 2010, 4(4), 197.
2 Wang W J, Guo J, Liu Q Y. Tribology, 2011, 31(4), 352(in Chinese).
王文健, 郭俊, 刘启跃. 摩擦学学报, 2011, 31(4), 352.
3 Ma L, He C G, Zhao X J, et al. Wear, 2016, 366-367, 13.
4 Zeng W, Wang S J, Han J. et al. Materials Reports B: Research Papers, 2019, 33(12), 4152(in Chinese).
曾伟, 王少杰, 韩靖, 等. 材料导报:研究篇, 2019, 33(12), 4152.
5 Wang Y, Zeng W, Han J. et al. Materials Reports B: Research Papers. 2020, 34(9), 18119(in Chinese).
王宇, 曾伟, 韩靖, 等. 材料导报:研究篇, 2020, 34(9), 18119.
6 Gao N, Dwyer-Joyce R S, Grieve D G. Journal of Rail and Rapid Transit, 2001, 215, 261.
7 Zhao X J, Ma L, Guo J, et al. Wear, 2017, 37(4), 544(in Chinese).
赵相吉, 马蕾, 郭俊, 等. 摩擦学学报, 2017, 37(4), 544.
8 Zhao X J, Shi L B, Wang W J, et al. China Machanical Engineering, 2019, 30(3), 278(in Chinese).
赵相吉, 师陆冰, 王文健, 等. 中国机械工程, 2019, 30(3), 278.
9 Stefano C, Steven C. Wear. 2016, 366-367, 325.
10 Chen Y, Zhao X, Liu P, et al. Wear, 2018, 414-415, 243.
11 Zhang Q, Toda-Caraballo I, Dai G, et al. International Journal of Fatigue, 2020, 137, 105668.
12 Korotkov V A. Journal of Friction and Wear, 2011, 32(1), 17.
13 Soriano C, Leunda J, Lambarri J, et al. Applied Surface Science, 2011, 257(16), 7101.
14 Xiang Y, Yu D, Li Q, et al. Journal of Materials Processing Technology, 2015, 226, 238.
15 Pan W X, Meng X, Li G, et al. Surface and Coatings Technology, 2005, 197(2-3), 345.
16 Yang B, Chen G, Zhang K, et al. Journal of Materials Processing Technology, 2009, 209(4), 2180.
17 Cao X, Yu D, Xiao M, et al. Plasma Chemistry and Plasma Processing, 2016, 36(2), 693.
18 Cao X, Yu D, Xiang Y, et al. Plasma Science and Technology, 2016, 18(7), 740.
19 Bailey N S, Tan W, Shin Y C. Surface and Coatings Technology, 2009, 203(14), 2003.
20 Heitkemper M, Bohne C, Pyzalla A, et al. International Journal of Fatigue, 2003, 25(2), 101.
21 Ooi G T C, Roy S, Sundararajan S. Materials Science and Engineering A, 2018, 732, 311.
22 Xiang Y, Yu D, Cao X, et al. Proceedings of the Institution of Mechanical Engineers, Part J, Journal of Engineering Tribology, 2018, 232(7), 787.
23 Antipovskii S V, Tyuftyaev A S. Welding International, 2011, 25(1), 78.
24 Zhang Q S. Research on laminar plasma surface strengthening and fatigue property of high-speed railway wheel material. Ph.D. Thesis, Southwest Jiaotong University, China, 2020(in Chinese).
张青松. 高速车轮材料层流等离子体表面强化及疲劳性能研究. 博士学位论文, 西南交通大学, 2020.
[1] 周峰峦, 王存宇, 曹文全, 董瀚. 冷轧中锰钢和等温淬火-碳配分钢裂纹扩展研究[J]. 材料导报, 2021, 35(8): 8164-8168.
[2] 惠阳, 刘贵民, 杜建华, 张宝生. 基于第三体的制动材料摩擦磨损行为研究进展[J]. 材料导报, 2021, 35(19): 19153-19160.
[3] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[4] 白光乾, 王秋岩, 邓海全, 李冬林, 李云. 氢环境下X52管线钢的抗氢性能[J]. 材料导报, 2020, 34(22): 22130-22135.
[5] 高旭东, 邵永波, 谢丽媛, 杨冬平. X56海底管道在腐蚀环境下疲劳裂纹扩展过程预测[J]. 材料导报, 2020, 34(2): 2123-2130.
[6] 崔巍, 宋日悬, 肖忠民, 冯子明, 冷德成, 董康兴, 张强, 杨志军. X80油气管道焊缝双裂纹干涉效应多场耦合数值模拟方法[J]. 材料导报, 2020, 34(2): 2131-2136.
[7] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[8] 崔巍, 张煜杭, 张强, 冯子明. 考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法[J]. 材料导报, 2019, 33(6): 1036-1041.
[9] 郭萍, 赵永庆, 洪权, 毛小南, 侯红苗, 潘浩. TC4-DT钛合金疲劳裂纹扩展的微观机制[J]. 材料导报, 2019, 33(20): 3448-3451.
[10] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[11] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[12] 赵伦, 何晓聪, 张先炼, 丁燕芳, 刘洋, 邓聪. TA1钛合金自冲铆接头力学性能及微动行为[J]. 材料导报, 2018, 32(20): 3579-3583.
[13] 王顺风, 马雪, 张祖华, 王爱国, 李亚林. 粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度[J]. 材料导报, 2018, 32(16): 2757-2762.
[14] 温飞娟, 董丽虹, 王海斗, 吕振林, 底月兰. 热喷涂零件界面裂纹扩展行为影响因素研究[J]. 材料导报, 2018, 32(16): 2793-2797.
[15] 葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed