Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23100256-7    https://doi.org/10.11896/cldb.23100256
  无机非金属及其复合材料 |
碱激发生活垃圾焚烧炉渣底灰泡沫混凝土制备及性能研究
张翠榕, 张鸿儒*, 江隽杰, 易世帆
福州大学土木工程学院, 福州 350108
Investigation on Preparation and Performance of Alkali-activated Municipal Waste Incineration Bottom Ash (MIBA) Foam Concrete
ZHANG Cuirong, ZHANG Hongru*, JIANG Junjie, YI Shifan
College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
下载:  全 文 ( PDF ) ( 4413KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 泡沫混凝土因其较低的自重、良好的隔音隔热和抗震性能在建筑行业应用广泛。传统泡沫混凝土使用水泥作为胶凝材料,碳排放量较大。为减少碳排放,使用城市生活垃圾焚烧炉渣底灰(MIBA)部分替代水泥制备生活垃圾焚烧炉渣泡沫混凝土(MIBAFC),在优选发泡剂的基础上,采用碱激发技术进一步改进泡沫混凝土性能,研究不同类型激发剂对MIBAFC力学性能、吸水率、干燥收缩的影响,并采用BSE、SEM、TG-DTG、XRD测试碱激发MIBAFC的微观结构和水化特性。结果表明: CaO+Na2CO3(CN)、NaOH(NH)、水玻璃+K2CO3(SK)、水玻璃(NS)这四种激发剂均可与MIBA中的SiO2、Al2O3等活性组分发生聚合反应,提高水化反应程度,改善硬化浆体的气孔结构,从而对MIBAFC的凝结时间、吸水率、力学性能、干燥收缩均有显著改善作用,对比四种激发剂的激发效果,NS综合改性效果最佳,CN效果不显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张翠榕
张鸿儒
江隽杰
易世帆
关键词:  泡沫混凝土  生活垃圾焚烧炉渣底灰  碱激发  凝结时间  强度  干燥收缩  气孔结构    
Abstract: Foam concrete is widely used in the construction industry due to its low weight, good sound insulation, heat insulation, and seismic perfor-mance. Traditional foam concrete uses cement as the binder, which results in high carbon emissions. To reduce carbon emissions, municipal solid waste incineration bottom ash (MIBA) is partially used to replace cement to prepare MIBA foam concrete (MIBAFC). Based on the optimal foaming agent, alkali-activated technology is further used to improve the performance of foam concrete. The effects of different types of activators on the mechanical properties, water absorption rate, and drying shrinkage of MIBAFC were studied, and the microstructure and hydration characteristics of alkali-activated MIBAFC were tested using BSE, SEM, TG-DTG, and XRD. The results show that CaO+Na2CO3 (CN), NaOH (NH), water glass+K2CO3 (SK), and water glass (NS) can all undergo polymerization reaction with the active components such as SiO2 and Al2O3 in MIBA, which improves the degree of hydration reaction and the pore structure of the hardened slurry. This significantly improves the setting time, water absorption rate, mechanical properties, and drying shrinkage of MIBAFC. Among the four activators, NS has the best overall modification effect, while CN has no significant effect.
Key words:  foam concrete    municipal solid waste incineration bottom ash (MIBA)    alkali activation    setting time    strength    drying shrinkage    pore structure
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TU52  
基金资助: 国家自然科学基金(52178121)
通讯作者:  *张鸿儒,福州大学土木工程学院副研究员、博士研究生导师。2007—2016年在浙江大学建筑工程学院获得学士、博士学位。目前主要从事混凝土结构耐久性、再生骨料混凝土改性技术以及混凝土多尺度性能劣化等方面的研究工作。发表论文30余篇,包括Construction and Building Materials、Journal of Building Engineering、Journal of Materials in Civil Engineering等。hrzh@fzu.edu.cn   
作者简介:  张翠榕,2020年6月于福建理工大学获得工学学士学位。现为福州大学土木工程学院硕士研究生,在张鸿儒副研究员的指导下进行研究。目前主要研究领域为高性能混凝土。
引用本文:    
张翠榕, 张鸿儒, 江隽杰, 易世帆. 碱激发生活垃圾焚烧炉渣底灰泡沫混凝土制备及性能研究[J]. 材料导报, 2024, 38(22): 23100256-7.
ZHANG Cuirong, ZHANG Hongru, JIANG Junjie, YI Shifan. Investigation on Preparation and Performance of Alkali-activated Municipal Waste Incineration Bottom Ash (MIBA) Foam Concrete. Materials Reports, 2024, 38(22): 23100256-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100256  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23100256
1 Xie Y, Wu X M, Fan Y M, et al. Journal of South China University of Technology (Natural Science Edition), 2009, 37(12), 37 (in Chinese).
谢燕, 吴笑梅, 樊粤明, 等. 华南理工大学学报(自然科学版), 2009, 37(12), 37.
2 Makarichi L, Jutidamrongphan W, Techato K. Renewable Sustainable Energy Reviews, 2018, 91, 812.
3 Huang Y M. Study on the leaching behavior of heavy metals and microbial community structure in stabilized fly ash and municipal solid waste co-disposal under simulated rainfall environment. Master's Thesis, Qingdao University of Technology, China, 2019 (in Chinese).
黄耀民. 模拟降雨环境下稳定化飞灰与生活垃圾混合填埋的重金属溶出行为及微生物群落结构研究. 硕士学位论文,青岛理工大学, 2019.
4 Ghouleh Z, Shao Y X. Journal Cleaner Production, 2018, 195, 268.
5 Lynn C J, Dhir P K, Ghataora G S. Construction and Building Materials, 2016, 127, 504.
6 Tang P, Xuan D X, Cheng H W, et al. Journal of Hazardous Materials, 2020, 381, 120951.
7 Amran Y H M, Farzadnia N, Ali A A A. Construction and Building Materials, 2015, 101, 990.
8 Raj A, Sathyan D, Mini K M. Construction and Building Materials, 2019, 221, 787.
9 Habert G, de Lacaillerie J B D, Roussel N. Journal of Cleaner Production, 2011, 19(11), 1229.
10 Van den Heede P, De Belie N. Cement Concrete Composites, 2012, 34(4), 431.
11 Sanjayan J G, Nazari A, Chen L, et al. Construction Building Materials, 2015, 79, 236.
12 Ahmaruzzaman M. Progress in Energy and Combustion Science, 2010, 36(3), 327.
13 Yip C K, Lukey G C, van Deventer J S J. Cement and Concrete Research, 2005, 35(9), 697.
14 Zhang B B, Ma Y, Zheng D D, et al. Journal of Building Engineering, 2023, 72, 106664.
15 Huang G D, Yang K, Sun Y H, et al. Construction and Building Materials, 2020, 248, 118582.
16 Maldonado-Alameda A, Giro-Paloma J, Svobodova-Sedlackova A, et al. Journal Cleaner Production, 2019, 242, 118443.
17 Zhu W P, Chen X, Struble L J, et al. Cement & Concrete Composites, 2019, 99, 175.
18 Reisi M, Dadvar S A, Sharif A. Magazine Concrete Research, 2017, 69(23), 1218.
19 Fang Y H, Wang R, Pang E B, et al. Journal of the Chinese Ceramic Society, 2010, 38(4), 621(in Chinese).
方永浩, 王锐, 庞二波, 等. 硅酸盐学报, 2010, 38(4), 621.
20 Tan X J, Chen W Z, Hao Y G, et al. Advances in Materials Science Engineering, 2014, 2014, 514759.
21 Sun Y X, Zhang T, Ding W L, et al. Petroleum Geology & Experiment, 2022, 44(6), 1105.
22 Wang X. Investigation of effect of sodium carbonate on properties of alkali-activated slag cement. Master's Thesis, Chongqing University, China, 2016 (in Chinese).
王新. 碳酸钠对碱矿渣水泥性能的影响研究. 硕士学位论文,重庆大学, 2016.
23 Han M F, Meng X X, Xu Z S. Bulletin of the Chinese Ceramic Society, 2009, 28(5), 893(in Chinese).
韩敏芳, 孟宪娴, 许泽胜. 硅酸盐通报, 2009, 28(5), 893.
24 Dang J T, Tang X S, Xiao J Z,et al. Cement & Concrete Composites, 2023, 145, 105341.
25 He H Y, Liu H L, Guo Y, et al. Journal of Materials Research and Technology-JMR&T, 2022, 21, 2663.
26 Hou J J. Research on the mesoscopic hydration reaction and nucleation mechanism of phosphogypsum-cement cementitious materials. Master's Thesis, China University of Geosciences, China, 2022 (in Chinese).
候姣姣. 磷石膏-水泥复合胶凝材料的细观水化反应机理和成核研究. 硕士学位论文,中国地质大学, 2022.
27 Zhao M Q. Extreme early age strength prediction of concrete based on maturity method. Master's Thesis, Hefei University of Technology, China, 2021 (in Chinese).
赵明强. 基于成熟度方法的混凝土极早龄期强度预测. 硕士学位论文,合肥工业大学, 2021.
28 Deng X, Guo H, Tan H, et al. Construction and Building Materials, 2022, 360, 129516.
29 Zhang B, Tan H, Shen W, et al. Cement and Concrete Composites, 2018, 92, 7.
30 Ma B, Zhang T, Tan H, et al. Construction and Building Materials, 2018, 179, 89.
31 Hao Y F, Yang G Z, Liang K K. Cement & Concrete Composites, 2022, 128, 104447.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[3] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[4] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[5] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[6] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[7] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[8] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[9] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[10] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[11] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[12] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[13] 姚志华, 张建华, 辛建平, 穆锐. 风积砂-黄土混合料与钢界面的环形剪切力学特性[J]. 材料导报, 2024, 38(5): 23070012-8.
[14] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[15] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed