Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23100036-8    https://doi.org/10.11896/cldb.23100036
  金属与金属基复合材料 |
稀土合金化对高碳高合金工模具钢的影响
戴宇恒1, 满廷慧1,*, 李朋2, 徐乐钱2, 刘宇2, 韦习成1,*
1 上海大学材料科学与工程学院,上海 200444
2 上海大学(浙江)高端装备基础件材料研究院,浙江 嘉善 314113
Effect of Rare Earth Alloying on High-carbon High-alloy Tool and Die Steel
DAI Yuheng1, MAN Tinghui1,*, LI Peng2, XU Leqian2, LIU Yu2, WEI Xicheng1,*
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2 Zhejiang Institute of Advanced Materials, Shanghai University, Jiashan 314113, Zhejiang, China
下载:  全 文 ( PDF ) ( 17648KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 莱氏体共晶碳化物粗大不均是严重影响高碳高合金工模具钢使役性能的不利因素。除了改变凝固冷却条件调控莱氏体共晶碳化物以外,国内外在利用稀土合金化手段改善共晶碳化物的形貌与分布方面也进行了大量研究,来提高高碳高合金工模具钢的热加工性能与韧性。本文简要介绍了高碳高合金工模具钢的生产工艺现状,阐述了高碳高合金工模具钢稀土合金化的研究进展,对比总结了稀土合金化研究现状中稀土元素的添加技术与添加量。另外,重点梳理了稀土合金化对高碳高合金工模具钢组织与性能的影响。最后,展望了稀土高碳高合金工模具钢的工业化生产与应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戴宇恒
满廷慧
李朋
徐乐钱
刘宇
韦习成
关键词:  高碳高合金工模具钢  生产工艺  稀土合金化  共晶碳化物    
Abstract: The coarse and uneven eutectic carbides in ledeburiteare the unfavorable factors that seriously affect the service performance of high-carbon high-alloy tool and die steels. Except for changing the solidification cooling conditions to control the eutectic carbides, rare earth alloying method is studied extensively at home and abroad to improve the morphology and distribution of eutectic carbides, consequently to enhance the hot working performance and toughness of high-carbon high-alloy tool and die steels. This paper briefly introduces the status of production processes for high-carbon high-alloy tool and die steels, then discusses the current research advancements in rare earth alloying, and then summarizes the existed researches on the rare earth elements addition technology and their optimal addition amount. The effects of rare earth alloying on the microstructures and properties of high-carbon high-alloy tool and die steels are emphatically demonstrated. Finally, the industrial production and application of rare earth high-carbon high-alloy tool and die steels are prospected.
Key words:  high-carbon high-alloy tool and die steels    production process    rare earth alloying    eutectic carbides
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  TG142.71  
通讯作者:  * 满廷慧,日本九州大学工学博士。曾就职于日本国立材料研究所助理研究员,现就职于上海大学材料科学与工程学院师资博士后。主要从事高性能钢铁材料的微观组织与多尺度力学性能研究,包括高碳高合金工模具钢、低密度钢等。参与国际(JSPS)、国家级、省部级项目等8项,发表论文32篇,申请专利8件(授权1件)。mantinghui@shu.edu.cn
韦习成,上海大学材料科学与工程学院研究员、博士研究生导师。主要从事改善疲劳、磨损性能的材料技术以及汽车钢板可制造性应用技术。作为负责人/主要参与者完成国家、省部级项目20多项、横向课题50多项。获省部级科技奖励2项。在国内外学术期刊和会议上发表论文280多篇,授权国家发明/实用新型专利17项。专著2本(《成形中的摩擦学》《高强度低合金Si-Mn系TRIP钢的动态拉伸性能》),参编/著4本(《摩擦学发展前沿》《10 000个科学难题》(制造科学卷)、《机械工程材料测试手册》(腐蚀与摩擦学卷)、《表面工程手册》)。wxc1028@shu.edu.cn   
作者简介:  戴宇恒,2018年6月、2021年6月分别于哈尔滨理工大学和内蒙古科技大学获得工学学士学位和硕士学位。现为上海大学材料科学与工程学院博士研究生,在韦习成教授的指导下进行研究。目前主要研究领域为高碳高合金工模具钢的组织与性能分析。
引用本文:    
戴宇恒, 满廷慧, 李朋, 徐乐钱, 刘宇, 韦习成. 稀土合金化对高碳高合金工模具钢的影响[J]. 材料导报, 2024, 38(23): 23100036-8.
DAI Yuheng, MAN Tinghui, LI Peng, XU Leqian, LIU Yu, WEI Xicheng. Effect of Rare Earth Alloying on High-carbon High-alloy Tool and Die Steel. Materials Reports, 2024, 38(23): 23100036-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100036  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23100036
1 Cui K. Composition, microstructure and properties of steels (2nd edition) Volume 4: Tool and die steels, Science Press, China, 2019, pp.973 (in Chinese).
崔崑. 钢的成分、组织与性能(第二版)第四分册:工模具钢, 科学出版社, 2019, pp.973.
2 Qin K. Mold Industry, 2012, 38(11), 74 (in Chinese).
秦珂. 模具工业, 2012, 38(11), 74.
3 Huang W X, Fu J X. Secondary refining and oxide metallurgy in iron and steel smelting, Taipei Heji Book Publishing House, China, 2012, pp.278.
黄文星, 付建勋. 钢铁冶炼之二次精炼与氧化物冶金, 台北合记图书出版社, 2012, pp.278.
4 Zhang D P, Tang D R, Chen Y G, et al. Chinese Rare Earths, 2009, 30(5), 70 (in Chinese).
张德平, 唐定骧, 陈云贵, 等. 稀土, 2009, 30(5), 70.
5 Xu G L, Huang P, Sun X, et al. Materials China, 2020, 39(1), 70 (in Chinese).
徐桂丽, 黄鹏, 孙溪, 等. 中国材料进展, 2020, 39(1), 70.
6 Yao J, Zhu X D, Liu Y, et al. Special Steel, 2022, 43(6), 66 (in Chinese).
姚健, 朱喜达, 刘宇, 等. 特殊钢, 2022, 43(6), 66.
7 Wu L Z. Hebei Metallurgy, 2015 (11), 1 (in Chinese).
吴立志. 河北冶金, 2015 (11), 1.
8 Yao J, Man T H, Liu Y, et al. China Metallurgy, 2023, 33(3), 77 (in Chinese).
姚健, 满廷慧, 刘宇, 等. 中国冶金, 2023, 33(3), 77.
9 Man T H, Dai Y H, Yao J, et al. Journal of Materials Research and Technology, 2023, 26, 8254.
10 Wei Q, Zhang Q L, Qian L, et al. Iron & Steel, 1964 (8), 34 (in Chinese).
魏其恩, 张庆亮, 钱励, 等. 钢铁, 1964 (8), 34.
11 Cai S X. Iron & Steel, 1966 (5), 33 (in Chinese).
蔡少学. 钢铁, 1966 (5), 33.
12 He E S, Jiang H S, Wang F Z. Iron & Steel, 1981 (4), 1 (in Chinese).
何恩赏, 蒋亨胜, 王福忠. 钢铁, 1981 (4), 1.
13 Luo D, Xing G H, Zou H L, et al. Acta Metallica Sinica, 1983 (4), 121 (in Chinese).
罗迪, 邢国华, 邹惠良, 等. 金属学报, 1983 (4), 121.
14 Zhang Y F. Hunan Metallurgy, 1990 (1), 48 (in Chinese).
张永锋. 湖南冶金, 1990 (1), 48.
15 Ye C C, Zhang S L, Liang T S, et al. Special steel, 1987 (4), 53 (in Chinese).
叶财超, 张盛霖, 梁铁生, 等. 特殊钢, 1987 (4), 53.
16 Qiu L Y, Pan B L. Iron and Steel, 1996 (2), 34 (in Chinese).
丘立一, 潘保良. 钢铁, 1996 (2), 34.
17 Li Yanjun, Jiang Q C, Zhao Y G, et al. Journal of the Chinese Society of Rare Earths, 1999 (2), 54 (in Chinese).
李彦军, 姜启川, 赵宇光, 等. 中国稀土学报, 1999 (2), 54.
18 Boccalini Jr, Corrêa A V O. Materials Science and Technology, 1999, 15(6), 621.
19 Song Y P, Li B Z, Zhu J Z, et al. Journal of Iron and Steel Research, 2001 (6), 31 (in Chinese).
宋延沛, 李秉哲, 朱景芝, 等. 钢铁研究学报, 2001 (6), 31.
20 Fu H G, Du J M, Jiang Z Q, et al. Journal of rare earth, 2003, 21(6), 664.
21 Chaus A S. Metal Science & Heat Treatment, 2004, 46(9-10), 415.
22 Jiang Z Q, Feng X L, Fu H G. Journal of Aeronautical Materials, 2007 (1), 6 (in Chinese).
蒋志强, 冯锡兰, 符寒光. 航空材料学报, 2007 (1), 6.
23 Wang M J, Mu S M, Sun F F, et al. Journal of Rare Earth, 2007, 25(4), 490.
24 Feng W W. Research on carbide properties of nitrogen and rare earth M2 high-speed steel. Ph. D. Thesis, Yanshan University, China, 2013(in Chinese).
冯唯伟. 含氮与稀土M2高速钢碳化物特性研究. 博士学位论文, 燕山大学, 2013.
25 Liu Q X, Lu D P, Lu L, et al. Heat Treatment Technology and Equipment, 2013, 34(5), 49 (in Chinese).
刘秋香, 陆德平, 陆磊, 等. 热处理技术与装备, 2013, 34(5), 49.
26 Hamidzadeh M A, Meratian M, Saatchi A. Materials Science and Engineering: A, 2013, 571, 193.
27 Qu M G, Wang Z H, Li H, et al. Journal of Rare Earths, 2013, 31(6), 628.
28 Zhou X F. Journal of Southeast University(English Edition), 2014, 30(4), 445.
29 Hufenbach J, Helth A, Lee M H, et al. Materials Science and Enginee-ring: A, 2016, 674, 366.
30 Zeli K, Burja J, McGuiness P J, et al. Scientific Reports, 2018, 8(1), 9233.
31 Yin F, Wang L, Xiao Z, et al. Journal of Rare Earth, 2020, 38(9), 1030.
32 Du S M. Iron Steel Vanadium Titanium, 2020, 41(1), 125 (in Chinese).
杜思敏. 钢铁钒钛, 2020, 41(1), 125.
33 Yang W Y, Xie Z B, Wang K, et al. HeBei Metallurgy, 2021(11), 32 (in Chinese).
杨文义, 谢志彬, 王凯, 等. 河北冶金, 2021 (11), 32.
34 Yang B, Xiong X, Liu R, et al. Journal of Materials Research and Technology, 2021, 14, 1275.
35 Ding Y, Yu J K. Hot Working Technology, 2022, 51(23), 15 (in Chinese).
丁雨, 于吉鲲. 热加工工艺, 2022, 51(23), 15.
36 Liu W F. Research on carbide control and structural forming of aeroengine high temperature bearing steel. Ph.D. Thesis, University of Science and Technology of China, China, 2022 (in Chinese).
刘威峰. 航空发动机高温轴承钢碳化物控制与构筑成形研究. 博士学位论文, 中国科学技术大学, 2022.
37 Zheng D L, Ma G J, Li J, et al. Journal of Materials Research and Technology, 2023, 24, 8252.
38 Sun S H, Yu H. Special Steel Technology, 2019, 25(3), 27 (in Chinese).
孙慎宏, 于红. 特钢技术, 2019, 25(3), 27.
39 Zhu J, Huang H Y, Xie J X. Journal of Iron and Steel Research, 2017, 29(7), 513 (in Chinese).
朱健, 黄海友, 谢建新. 钢铁研究学报, 2017, 29(7), 513.
40 Li D Z, Wang P, Chen X Q, et al. Nature Materials, 2022, 21, 1137.
41 谢志彬, 梁敬斌, 杨文义, 等. 中国专利, CN114015926A, 2022-02-08.
42 Jia C C, Zhang W L, Hu B T, et al. Powder Metallurgy Technology, 2017, 35(6), 416 (in Chinese).
贾成厂, 张万里, 胡彬涛, 等. 粉末冶金技术, 2017, 35(6), 416.
43 Liu B W. Powder metallurgy high-speed steel alloy composition and performance optimization. Ph. D. Thesis, University of Science and Technology Beijing, China, 2020 (in Chinese).
刘博文. 粉末冶金高速钢合金成分及性能优化. 博士学位论文, 北京科技大学, 2020.
44 Long Q, Wu Y J, Ling M, et al. Steelmaking, 2018, 34(1), 57 (in Chinese).
龙琼, 伍玉娇, 凌敏, 等. 炼钢, 2018, 34(1), 57.
45 Wang H P, Chen D. Powder Metallurgy Technology, 2016, 34(4), 300 (in Chinese).
王辉平, 陈鼎. 粉末冶金技术, 2016, 34(4), 300.
46 Deng C H, Chen Y, Gong T Z, et al. Chinese Journal of Materials Research, 2023, 37(12), 915(in Chinese).
邓朝辉, 陈云, 巩桐兆, 等. 材料研究学报, 2023, 37(12), 915.
47 Hu Q. Microstructure and properties of short-process rare earth modified electroslag remelted recycled high-speed steel. Ph. D. Thesis, Huazhong University of Science and Technology, China, 2019(in Chinese).
胡强. 短流程稀土改性电渣重熔再生高速钢组织及性能. 博士学位论文. 华中科技大学, 2019.
48 Zhang Z. Magnesium/rare earth refined high-speed tool steel solidification research. Master's Thesis, Anhui University of Technology, China, 2019(in Chinese).
张章. 镁/稀土细化高速工具钢凝固组织的研究. 硕士学位论文, 安徽工业大学, 2019.
49 Zhu S L, Cao H Z, Hu W H, et al. Rare Metal Materials and Engineering, 2014, 43(8), 1983 (in Chinese).
朱施利, 曹华珍, 胡文豪, 等. 稀有金属材料与工程, 2014, 43(8), 1983.
50 Wang M J, Chen L, Wang Z X, et al. Transactions of Materials and Heat Treatment, 2012, 33(3), 57 (in Chinese).
王明家, 陈雷, 王子兮, 等. 材料热处理学报, 2012, 33(3), 57.
51 Wang D. Effect of rare earth on microstructure and properties of M35 high speed steel. Master's Thesis, Southeast University, China, 2005(in Chinese).
王栋. 稀土对M35高速钢组织和性能的影响. 硕士学位论文, 东南大学, 2005.
52 Li Y B, Cheng X N, Zhu R Y. Foundry Technology, 2011, 32(12), 1677 (in Chinese).
李亚波, 程晓农, 朱儒燕. 铸造技术, 2011, 32(12), 1677.
53 Zhou Xuefeng. Research on carbide control technology and production process of M2 high speed steel. Ph.D.Thesis, Southeast University, China, 2011(in Chinese).
周雪峰. M2高速钢碳化物控制技术和生产工艺研究. 博士学位论文, 东南大学, 2011.
54 Fu H G, Xing J D. Journal of Aeronautical Materials, 2003(1), 7 (in Chinese).
符寒光, 邢建东. 航空材料学报, 2003(1), 7.
[1] 褚绍阳, 干勇, 仇圣桃, 项利, 田玉石, 石超. 高牌号无取向硅钢生产流程中织构控制研究现状[J]. 材料导报, 2024, 38(13): 23020235-9.
[2] 张飞, 韩富年, 卢友余, 文光华, 唐萍. 连铸保护渣技术标准体系研究进展[J]. 材料导报, 2023, 37(3): 21030265-12.
[3] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed