Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23040040-8    https://doi.org/10.11896/cldb.23040040
  金属与金属基复合材料 |
超声振动在激光熔覆中的作用机制及研究进展
李占明1,*, 王宏宇1,2, 孙晓峰3, 王梦璐1,2, 王瑞1, 宋巍1
1 陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
2 东北大学材料科学与工程学院,沈阳 110819
3 陆军装甲兵学院装备保障与再制造系,北京 100072
Mechanism and Research Progress of Ultrasonic Vibration in Laser Cladding
LI Zhanming1,*, WANG Hongyu1,2, SUN Xiaofeng3, WANG Menglu1,2, WANG Rui1, SONG Wei1
1 National Engineering Research Center for Remanufacturing, Academy of Army Armored Forces, Beijing 100072, China
2 Academy of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
3 Department of Equipment Support and Remanufacturing, Academy of Army Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 22845KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超声波在液态金属中传播时具有独特的声学效应和空化作用,在液态金属凝固过程中施加超声振动,可以使凝固组织从粗大的柱状晶转变成均匀细小的等轴晶,成分偏析现象得到明显改善,气孔、夹杂等缺陷也能够大幅减少,在解决不同合金材料铸造、焊接、熔覆难题方面均具有很大的发展潜力和广阔的应用前景。本文介绍了超声振动处理对镍基合金、不锈钢等激光熔覆层性能的提升效果,分析了超声振动处理对激光熔覆熔池金属结晶过程的作用机制,揭示了超声振动改善激光熔覆层性能的微观机理,构建了振动处理工艺、熔覆层组织结构和性能之间的对应关系;获取科学合理的超声振动施加方式和能量精准控制方法是超声振动处理在激光熔覆领域中拓展应用急需解决的问题和重要的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李占明
王宏宇
孙晓峰
王梦璐
王瑞
宋巍
关键词:  激光熔覆  超声振动  作用机制    
Abstract: Ultrasonic has unique acoustic and cavitation effects when spreading in liquid metal. The solidification structure can be changed from coarse columnar crystals to uniform fine equiaxed crystals, the segregation phenomenon can also be significantly improved, porosity, inclusion and other defects can be greatly reduced by applying ultrasonic vibration in the solidification process of liquid metal, so it has great development potential and broad application prospects in solving the casting, welding and melting problems of different alloy materials. In this paper, the enhancement effect of ultrasonic vibration treatment on laser cladding coating properties of nickel base alloy and stainless steel is introduced, and the mechanism of ultrasonic vibration treatment on metal crystallization in laser cladding pool is revealed. Revealing the micro mechanism of ultrasonic vibration to improve the performance of laser cladding coating, establishing the relationship between vibration treatment technology, microstructure and properties of cladding coating and obtaining a scientific and reasonable ultrasonic vibration application method and accurate energy control method are urgent problems and important research directions when the ultrasonic vibration treatment application is expanded in the laser cladding field.
Key words:  laser cladding    ultrasonic vibration    action mechanism
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TG174  
基金资助: ****预研基金(50904030301)
通讯作者:  *李占明,陆军装甲兵学院副研究员、硕士研究生导师。2002年河北科技大学材料学院焊接工艺与设备专业本科毕业,2006年装甲兵工程学院装备维修与再制造工程系材料学专业硕士毕业,2010年装甲兵工程学院装备维修与再制造工程系材料加工专业博士毕业后留校工作至今。目前主要从事武器装备机械零部件损伤修复与强化、装备战场应急抢修等方面的研究工作。发表论文60余篇,授权国家发明专利或实用新型专利30余项,作为项目负责人获得军队科技进步二等奖2项。18911582505@163.com   
引用本文:    
李占明, 王宏宇, 孙晓峰, 王梦璐, 王瑞, 宋巍. 超声振动在激光熔覆中的作用机制及研究进展[J]. 材料导报, 2024, 38(16): 23040040-8.
LI Zhanming, WANG Hongyu, SUN Xiaofeng, WANG Menglu, WANG Rui, SONG Wei. Mechanism and Research Progress of Ultrasonic Vibration in Laser Cladding. Materials Reports, 2024, 38(16): 23040040-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040040  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23040040
1 Christian N, Jan G, Andreas S, et al. Ultrasonics, 2023, 131, 106954.
2 Khalifa W, Tsunekawa Y. Transactions of Nonferrous Metals Society of China, 2016, 26(4), 930.
3 Xu Z W, Li Z W, Xu Z R, et al. Journal of Materials Processing Technology, 2022, 300, 117397.
4 Xiao M Y, Jiang F C. Materials Letters, 2022, 322, 132520.
5 Hu Z Y, Li Y, Lu B W, et al. Optics and Laser Technology, 2022, 155, 108449.
6 Ma Z S, Xia C Q, Zhong H, et al. Surface & Coatings Technology, 2023, 455, 129217.
7 Yao F P. Manufacturing Technology & Machine Tool, 2020(10), 9 (in Chinese).
姚芳萍. 制造技术与机床, 2020(10), 9.
8 Wang H, Hu Y B, Ning F D, et al. Journal of Materials Processing Technology, 2019, 276, 116395.
9 Nie X W, Zhou J Z, Xu J L, et al. Surface Technology, 2020, 49(9), 206 (in Chinese).
聂学武, 周建忠, 徐家乐, 等. 表面技术, 2020, 49(9), 206.
10 Shen J Y, Lin C, Yao Y Q, et al. Surface Technology, 2019, 48(12), 226 (in Chinese).
申井义, 林晨, 姚永强, 等. 表面技术, 2019, 48(12), 226.
11 Wang X, Yu X T. Chinese Journal of Vacuum Science and Technology, 2020, 40(8), 745 (in Chinese).
王雪, 于秀涛. 真空科学与技术学报, 2020, 40(8), 745.
12 Li M Y, Zhang Q, Han B, et al. Optics and Lasers in Engineering, 2020, 125, 105848.
13 Li M Y, Han B, Wang Y, et al. Optik-International Journal for Light and Electron Optics, 2016, 127, 4596.
14 Ma G Y, Yan S, Wu D J, et al. Ceramics International, 2017, 43(13), 9622.
15 Zhang L, Lin C, Xu H H, et al. Applied Laser, 2022, 42(3), 15 (in Chinese).
张梁, 林晨, 徐欢欢, 等. 应用激光, 2022, 42(3), 15.
16 Chen L, Chen W J, Huang Q, et al. Journal of Materials Engineering, 2019, 47(5), 79 (in Chinese).
陈林, 陈文静, 黄强, 等. 材料工程, 2019, 47(5), 79.
17 Zhang Z, Li J N, Fan Z Y, et al. Surface & Coatings Technology, 2023, 454, 129114.
18 Zhang M, Zhao G L, Wang X H, et al. Surface and Coatings Technology, 2020, 403, 126445.
19 Xu J L, Zhou J Z, Tan W S, et al. Chinese Journal of Lasers, 2019, 46(1), 122 (in Chinese).
徐家乐, 周建忠, 谭文胜, 等. 中国激光, 2019, 46(1), 122.
20 Zhou L, Chen S Y, Zhang C Y, et al. Materials Science & Engineering A, 2021, 811, 141088.
21 Zhou L, Chen S Y, Ma M Z, et al. Materials Science & Engineering A, 2022, 840, 142971.
22 Xu J L, Zhou J Z, Tan W S, et al. Surface Engineering, 2018, 36, 12.
23 Wang J Z, Zhou J Z, Zhang T, et al. Coatings, 2023, 13(1), 151.
24 Song H L, Jiang F C, Guo C H, et al. Materials Letters, 2023, 335, 133780.
25 Zhu L D, Yang Z C, Xin B, et al. Surface & Coatings Technology, 2021, 410, 126964.
26 Zhuang D D, Du B, Zhang S H, et al. Surface & Coatings Technology, 2022, 433, 128122.
27 Lv J, Zhou J Z, Zhang T, et al. Coatings, 2022, 12(3), 412.
28 Gao G F, Guo Z L, Li K, et al. Heat Treatment of Metals, 2019, 44(1), 172 (in Chinese).
高国富, 郭子龙, 李康, 等. 金属热处理, 2019, 44(1), 172.
29 Liu L J, Feng M K, Wang X L, et al. Transactions of the China Welding Institution, 2021, 42(6), 85 (in Chinese).
刘立君, 冯梦奎, 王晓陆, 等. 焊接学报, 2021, 42(6), 85.
30 Wu D J, Guo M H, Ma G Y, et al. Materials Letters, 2015, 141, 207.
31 Li C, Wang Y L, Jiang F L, et al. Surface Technology, 2020, 49(11), 309 (in Chinese).
李成, 王玉玲, 姜芙林, 等. 表面技术, 2020, 49(11), 309.
32 Li C Y, Li J H, Yao F P. Manufacturing Technology & Machine Tool, 2022(7), 51 (in Chinese).
李传钰, 李金华, 姚芳萍. 制造技术与机床, 2022(7), 51.
33 Yao F P, Li J H, Fang L J, et al. Coatings, 2022, 12(9), 1035.
34 Zhang J, Wang Y L, Jiang F L, et al. Hot Working Technology, 2021, 50(12), 22 (in Chinese).
张杰, 王玉玲, 姜芙林, 等. 热加工工艺, 2021, 50(12), 22.
35 Tuominen J, Näkki J, Pajukoski H, et al. Surface Engineering, 2016, 32(12), 923.
36 Li G Q, Wang L F, Zhao L, et al. Hot Working Technology, 2021, 50(16), 13 (in Chinese).
李广琪, 王丽芳, 赵亮, 等. 热加工工艺, 2021, 50(16), 13.
37 Li D Y, Zhang J, Zhao L Z, et al. Transactions of the China Welding Institution, 2017, 38(5), 35 (in Chinese).
李德英, 张坚, 赵龙志, 等. 焊接学报, 2017, 38(5), 35.
38 Li D Y, Zhang J, Zhao L J, et al. Acta Materiae Compositae Sinica, 2016, 33(10), 2270 (in Chinese).
李德英, 张坚, 赵龙志, 等. 复合材料学报, 2016, 33(10), 2270.
39 Zhao Y, Wu M F, Hou J C, et al. Journal of Alloys and Compounds, 2022, 920, 165888.
40 Zhang A F, Fu T, Wang T, et al. Chinese Journal of Lasers, 2018, 45(12), 85 (in Chinese).
张安峰, 付涛, 王潭, 等. 中国激光, 2018, 45(12), 85.
41 Mohammad R, Ralph W, Samuel S, et al. Procedia CIRP, 2022, 113, 307.
42 Wang W, Guo P F, Zhang J Z, et al. Chinese Journal of Lasers, 2013, 40(8), 70 (in Chinese).
王维, 郭鹏飞, 张建中, 等. 中国激光, 2013, 40(8), 70.
43 Chen C Y, Deng Q L, Song J L. Journal of Nanjing University of Aeronautics & Astronautics, 2005, 37(B11), 44 (in Chinese).
陈畅源, 邓琦林, 宋建丽. 南京航空航天大学学报, 2005, 37(B11), 44.
44 Mi H B, Chen T, Deng Z X, et al. Coatings, 2022, 12(1), 99.
45 Cong W L, Ning F D. International Journal of Machine Tools and Manufacture, 2017, 121, 61.
46 Wen X, Cui X F, Jin G, et al. Journal of Alloys and Compounds, 2020, 835, 155449.
47 Ning F D, Cong W L. Materials Letters, 2016, 179, 61.
48 Jiang F L, Li C, Wang Y L, et al. Materials Research Express, 2019, 6(8), 0865h6.
49 Wang Y L, Li C, Jiang F L, et al. Materials Research Express, 2019, 6(10), 106563.
50 Wang Y L, Liu S Y, Zhang X Y, et al. China Mechanical Engineering, 2018, 29(21), 2600 (in Chinese).
王玉玲, 刘善勇, 张翔宇, 等. 中国机械工程, 2018, 29(21), 2600.
51 Hosseini T H, Rafiaei S M. Materials Research Express, 2020, 7(1), 016531.
52 Li C, Yang Y P, Liu Z T, et al. CIRP Journal of Manufacturing Science and Technology, 2022, 38, 16.
53 Han X, Li C, Yang Y P, et al. Surface & Coatings Technology, 2021, 406, 126750.
54 Xu H H, Lin C, Liu J, et al. Applied Laser, 2021, 41(3), 439 (in Chinese).
徐欢欢, 林晨, 刘佳, 等. 应用激光, 2021, 41(3), 439.
55 Yuan D, Shao S Q, Guo C H, et al. Ultrasonics Sonochemistry, 2021, 73, 105472.
56 Zhang Z, Li J N, Zhao B B, et al. Journal of Alloys and Compounds, 2023, 938, 168639.
57 Wang F, Eskin D, Mi J W, et al. Acta Materialia, 2017, 141, 142.
58 Yao Z H, Wang Z, Chen J, et al. Manufacturing Letters, 2022, 31, 56.
59 Gao J X, Li C, Chen Z W, et al. Materials Reports, 2021, 35(12), 12161 (in Chinese).
高敬翔, 李昌, 陈正威, 等. 材料导报, 2021, 35(12), 12161.
[1] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[2] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[3] 操慧珺, 李韦承, 张天刚, 张宏伟, 张志强. TC4表面WC/Ni-MoS2钛基复合涂层组织与摩擦学性能[J]. 材料导报, 2024, 38(15): 24020099-8.
[4] 魏新龙, 戴凡昌, 付二广, 班傲林, 张超. 单道激光熔覆高熵合金工艺优化及复合涂层耐冲蚀性能研究[J]. 材料导报, 2024, 38(14): 23020130-7.
[5] 戈雪良, 柯敏勇, 刘伟宝, 陆采荣, 王珩, 梅国兴, 杨虎. 混凝土冻融作用下冻结应力演化规律及对抗冻性能的影响[J]. 材料导报, 2024, 38(12): 22070144-5.
[6] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[7] 陈飞寰, 蔡召兵, 董颖辉, 林广沛, 张坡, 卢冰文, 古乐. 激光熔覆NbMoTaWV难熔高熵合金涂层的高温氧化行为[J]. 材料导报, 2024, 38(10): 22110117-8.
[8] 李素丽, 马恺悦, 冯高磊, 熊杰, 李连强. 激光熔覆同路送丝光路结构设计及分析[J]. 材料导报, 2023, 37(6): 21090270-6.
[9] 畅庚榕, 刘明霞, 孟瑜, 郭岩, 马大衍, 李世亮, 徐可为. H13钢表面同质激光熔覆中WC微合金化行为及摩擦学性能研究[J]. 材料导报, 2023, 37(22): 22030041-6.
[10] 屈盛官, 翟荐硕, 段晨风, 孙朋飞, 李小强. TC4钛合金二维超声振动车削性能研究[J]. 材料导报, 2023, 37(22): 22040390-9.
[11] 赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
[12] 郭明荣, 鲁艳军, 陈润华. 石英玻璃微流道超声振动磨削加工及流动阻力特性研究[J]. 材料导报, 2023, 37(17): 22040004-7.
[13] 刘卫东, 米国发, 李雷, 陈晓文, 潘雨佳, 翟芳艺, 苗浩伟. 辅助处理对激光熔覆层组织和性能影响的研究进展[J]. 材料导报, 2023, 37(15): 21120139-7.
[14] 侯锁霞, 赵江昆, 李强, 何丽娜, 张好强. 对激光熔覆形成缺陷的影响因素的探究[J]. 材料导报, 2022, 36(Z1): 22030105-4.
[15] 谷米, 孙荣禄, 牛伟, 郝文俊, 左润燕. 硼铁粉含量对激光熔覆AlCoCrFeNi高熵合金涂层性能及形貌的影响[J]. 材料导报, 2022, 36(8): 20120230-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed