Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 24030063-7    https://doi.org/10.11896/cldb.24030063
  金属与金属基复合材料 |
预腐蚀与预疲劳对30CrMnSiA螺栓钢微动疲劳行为的影响
杨廷勇1,*, 罗伟1, 冯利军2, 赵伟东3, 刘道新4, 邓文1, 张超1
1 中国直升机设计研究所,江西 景德镇 333001
2 西南技术工程研究所,重庆 400039
3 太原理工大学机械与运载工程学院,太原 030024
4 西北工业大学民航学院,西安 710072
Influence of Pre-corrosion and Pre-fatigue on Fretting Fatigue Behavior of 30CrMnSiA Bolt Steel
YANG Tingyong1,*, LUO Wei1, FENG Lijun2, ZHAO Weidong3, LIU Daoxin4, DENG Wen1, ZHANG Chao1
1 China Helicopter Research and Development Institute, Jingdezhen 333001, Jiangxi, China
2 Southwest Technology and Engineering Research Institute, Chongqing 400039, China
3 College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
4 School of Civil Aviation, Northwestern Polytechnical University, Xi'an 710072, China
下载:  全 文 ( PDF ) ( 32409KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究30CrMnSiA高强度螺栓钢在海洋环境服役工况下的微动疲劳行为,采用扫描电子显微镜、能谱仪、电化学阻抗谱等分析手段研究了预腐蚀、预疲劳以及两者联合作用对30CrMnSiA高强钢微动疲劳损伤行为的影响规律及机制。结果表明:本实验条件下30CrMnSiA螺栓钢损伤模式为微动疲劳;随着预腐蚀时间的延长,30CrMnSiA螺栓钢的微动疲劳寿命逐渐降低,预腐蚀6 d后螺栓的平均微动疲劳寿命降低了73.69%。在相同预腐蚀实验条件下,随着预疲劳循环次数的增加,螺栓的微动疲劳寿命逐渐降低;然而“预疲劳1万次+预腐蚀2 d”螺栓的微动疲劳寿命却稍高于单纯预腐蚀2 d的螺栓。预疲劳循环次数愈多和预腐蚀时间越长,螺栓的微动疲劳寿命则越短。预疲劳4万次循环后再腐蚀4 d的螺栓疲劳寿命降低了86.4%。原因是预腐蚀及其与预疲劳联合作用通常会促进30CrMnSiA螺栓钢表面疲劳裂纹的萌生和扩展,进而导致其微动疲劳寿命降低,但当预疲劳周次较少时,微动磨损较轻,且对螺栓表面有一定的整平作用,由此缓解了腐蚀的不利影响,使得螺栓的微动疲劳寿命反而比单纯预腐蚀螺栓的寿命稍长。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨廷勇
罗伟
冯利军
赵伟东
刘道新
邓文
张超
关键词:  30CrMnSiA螺栓钢  腐蚀  微动疲劳  电化学    
Abstract: To investigate the fretting fatigue behavior of 30CrMnSiA high-strength bolt steel under marine environmental service conditions, the influence and mechanism of pre-corrosion, pre-fatigue, and their combined effects on the fatigue damage behavior of 30CrMnSiA high-strength steel were studied by using analysis methods such as scanning electron microscopy, energy dispersive spectroscopy, electrochemical impedance spectroscopy. The results showed that, under the experimental conditions here, the damage mode of 30CrMnSiA high-strength bolt steel is fretting fatigue. With the increase of pre-corrosion time, the fretting fatigue life of 30CrMnSiA high-strength bolt steel gradually decreased, and the average fretting fatigue life of bolts decreased by 73.69% after 6 days pre-corrosion. Under the same pre-corrosion experimental conditions, as the number of pre-fatigue cycles increased, the fretting fatigue life of bolts gradually decreased; however, the fretting fatigue life of bolts with 10 000 pre-fatigue cycles and 2 days of pre-corrosion is a little higher than that of bolts with only 2 days of pre-corrosion. The more pre-fatigue cycles and the longer the pre-corrosion time, the bolt had shorter fretting fatigue life. After 40 000 cycles of pre-fatigue and 4 days of corrosion, the fatigue life of bolts decreased by 86.4%. The reason was that pre-corrosion and its combined effect with pre-fatigue usually promoted the initiation and propagation of fatigue cracks on the surface of 30CrMnSiA high-strength bolt steel, which led to a reduction of their fretting fatigue life. Ho-wever, when the pre-fatigue cycle was small, micro wear was lighter and had a certain leveling effect on the bolt surface, thereby alleviated the adverse effects of corrosion. As a result, the fretting fatigue life of bolts is slightly longer than that of simply pre-corrosion bolts.
Key words:  30CrMnSiA bolt steel    corrosion    fretting fatigue    electrochemical
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  TB301  
基金资助: 国家自然科学基金(52271071)
通讯作者:  * 杨廷勇,2018年6月、2021年3月分别于南昌航空大学和西北工业大学获得工学学士学位和硕士学位。现为中国直升机设计研究所工程师。目前主要研究领域为直升机疲劳试验技术及疲劳寿命预测。yangtingyong1005@163.com   
引用本文:    
杨廷勇, 罗伟, 冯利军, 赵伟东, 刘道新, 邓文, 张超. 预腐蚀与预疲劳对30CrMnSiA螺栓钢微动疲劳行为的影响[J]. 材料导报, 2024, 38(23): 24030063-7.
YANG Tingyong, LUO Wei, FENG Lijun, ZHAO Weidong, LIU Daoxin, DENG Wen, ZHANG Chao. Influence of Pre-corrosion and Pre-fatigue on Fretting Fatigue Behavior of 30CrMnSiA Bolt Steel. Materials Reports, 2024, 38(23): 24030063-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24030063  或          http://www.mater-rep.com/CN/Y2024/V38/I23/24030063
1 Liu X C, Chen X J, Liang Z W, et al. Metals, 2022, 12(10), 1713.
2 Kong Y, Liu Z, Liu Q. Spray Technol, 2022, 31, 2136.
3 Liu X C, Chen X J, Liang Z W, et al. Material, 2022, 15(20), 7380.
4 Li F, Zhang S D, Zhu C C, et al. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2022, 16(1), JAMDSM0009.
5 Mohamed E M, Thierry P L. International Journal of Fatigue, 2013, 47, 330.
6 Seth J P, Rita B F, Mark D S. Coatings, 2017, 7(2), 25.
7 Yang X K, Zhang L W, Liu M, et al. Corrosion Engineering, Science and Technology, 2017, 52(3), 226.
8 Yu H, Liu X T, Yang G H, et al. Journal of the Brazilian Society of Mechanical Sciences, 2024, 46(4), S40430-024-04793-2.
9 Ye G N, Chen Y L. Advances in Aeronautical Science and Engineering, 2011, 2(1), 66(in Chinese).
叶广宁, 陈跃良. 航空工程进展, 2011, 2(1), 66.
10 Chen G, Lu L L, Cui Y, et al. International Journal of Fatigue, 2015, 80, 364.
11 Botvina L R, Beletsky E N, Tyutin M R, et al. Physical Mesomechanics, 2023, 26(4), 391.
12 Zhang W F, Gao X Y, Liu X P, et al. Materials Science Forum, 2020, 984, 4.
13 Yang Y, Zhao J J, Yang X K, et al. Equipment Environmental Enginee-ring, 2017, 14(3), 57(in Chinese).
杨祎, 赵俊军, 杨小奎, 等. 装备环境工程, 2017, 14(3), 57.
14 Li N, Zhang W F, Xu H, et al. Materials, 2022, 15(2), 629.
15 Luo L Z, Zhou K, Li X F, et al. IOP Conference Series: Materials Science and Engineering, 2021, 1043(3), 032044.
16 Yang G H, Liu X T, Lai J F, et al. Advances in Mechanical Engineering, 2022, 14(6), 16878132221104307.
17 Zhang H W, He Y T, Fan C H, et al. Acta Aeronautics et Astronautics Sinica, 2013, 34(5), 1114(in Chinese).
张海威, 何宇廷, 范超华, 等. 航空学报, 2013, 34(5), 1114.
18 Behvar A, Haghshenas M. The Journal of Space Safety Engineering, 2023, 10(3), 284.
19 The General Reserve Department of PLA. Laboratory environmental test methods for military material Part 11-Salt spray, China, 2009(in Chinese).
中国人民解放军总装备部. 军用装备试验室环境试验方法第11部分 盐雾试验, 2009.
20 Liu W T, Li Y H. Aircraft structure calendar life evolution technology, Aeronautics Industry Press, China, 2004(in Chinese).
刘文珽, 李玉海. 飞机结构日历寿命体系评定技术, 航空工业出版社, 2004.
21 Zhang H W, He Y T, Wu L M, et al. Chinese Journal of Applied Mechanics, 2012, 29(5), 589(in Chinese).
张海威, 何宇廷, 伍黎明, 等. 应用力学学报, 2012, 29(5), 589.
22 Tintero D L, Benito E K, Maunahan H S. Journal of Engineering Research, 2023, 11(1), 100005.
23 Hao X L, Liu J H, LI S H, et al. Journal of Aeronautical Materials, 2010, 30(1), 67(in Chinese).
郝雪龙, 刘建华, 李松海, 等. 航空材料学报, 2010, 30(1), 67.
24 Luo Q H, Zhao Z Y, He Z Q, et al. Journal of Aeronautical Materials, 2017, 37(6), 34(in Chinese).
罗庆洪, 赵振业, 贺自强, 等. 航空材料学报, 2017, 37(6), 34.
25 Sun T, Song R B, Yang F Q, et al. Acta Metallurgica Sinica, 2014, 50(11), 1327(in Chinese).
孙挺, 宋仁伯, 杨富强, 等. 金属学报, 2014, 50(11), 1327.
26 Davison C R, Rutke T. Journal of Engineering for Gas Turbines and Power, 2013, 136(8), 1.
27 Chen J, Yan F Y. Transactions of Nonferrous Metals Society of China, 2012, 22 (6), 1356.
28 Xu L, Chen Y L, Zhang Y, et al. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(3), 403(in Chinese).
徐丽, 陈跃良, 张勇, 等. 南京航空航天大学学报, 2014, 46(3), 403.
29 Latifi A, Imanii M, Khorasani M T, et al. Surface & Coatings Technology, 2013, 221 (5), 1.
30 Chen J, Li Q A, Zhang Q, et al. Journal of Chinese Society for Corrosion and Protection, 2014, 34(5), 433(in Chinese).
陈君, 李全安, 张清, 等. 中国腐蚀与防护学报, 2014, 34(5), 433.
31 Du C H, Bai X Q. Lubrication Engineering, 2021, 46(2), 121(in Chinese).
杜琮昊, 白秀琴. 润滑与密封, 2021, 46(2), 121.
[1] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[2] 赵永福, 唐敏, 姜峨, 银朝晖, 陈子瑞, 张根, 吴宗佩, 李杨. 氨型碱性水化学对690TT腐蚀特性的影响[J]. 材料导报, 2024, 38(7): 23030048-6.
[3] 王越, 周本基, 徐能能, 乔锦丽. 可逆锌-空气电池锌阳极研究进展及挑战[J]. 材料导报, 2024, 38(6): 23040162-10.
[4] 苏咸凯, 解志鹏, 张达, 侯圣平, 杨斌, 梁风. 单壁碳纳米角的制备及电化学应用进展[J]. 材料导报, 2024, 38(6): 22100192-13.
[5] 李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, 2024, 38(6): 22070018-14.
[6] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[7] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[8] 张学鹏, 张戎令, 杨斌, 肖鹏震, 王小平, 龙朝飞. 冻融-硫酸盐腐蚀耦合作用下早龄期混凝土强度演变及预测模型研究[J]. 材料导报, 2024, 38(5): 22080059-9.
[9] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[10] 俞小花, 李影, 谭皓天, 沈庆峰, 王发强, 谢刚. 十二烷基三甲基氯化铵对铝-空气电池Al-0.8Bi阳极性能的影响[J]. 材料导报, 2024, 38(23): 23070127-6.
[11] 陈文龙, 周旭东, 张宇, 张云升, 马智聪. 电化学除氯对钢筋腐蚀状态及其周围混凝土微观结构的影响[J]. 材料导报, 2024, 38(23): 23070258-8.
[12] 王帆,赵国仙, 方堃, 裴文霞, 丁浪勇, 刘冉冉. 3Cr钢在含O2的CO2环境中的腐蚀行为研究[J]. 材料导报, 2024, 38(23): 23070093-8.
[13] 裴文霞, 赵国仙, 丁浪勇, 方堃, 王帆, 刘冉冉. 温度对管线钢在SRB/CO2环境中的腐蚀影响[J]. 材料导报, 2024, 38(23): 23070058-8.
[14] 张若楠, 韦朋余, 王珂, 曾庆波, 王连, 宋培龙. 海水环境下船用高强钢腐蚀疲劳损伤行为研究[J]. 材料导报, 2024, 38(23): 23090176-6.
[15] 吴伟同, 徐迪, 程学群, 张达威, 李晓刚. 国家材料腐蚀与防护科学数据中心建设历程与发展现状[J]. 材料导报, 2024, 38(23): 23090008-8.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed