Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 21080231-6    https://doi.org/10.11896/cldb.21080231
  金属与金属基复合材料 |
Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响
黄智恒1, 薛松柏1,*, 王博2, 张帆1, 龙伟民2
1 南京航空航天大学材料科学与技术学院,南京 210016
2 中机智能装备创新研究院(宁波)有限公司,浙江 宁波 315700
Effect of Sm on Microstructure, Properties and Hydrogen Content of SAl 4043 Aluminum Alloy Welding Wire
HUANG Zhiheng1, XUE Songbai1,*, WANG Bo2, ZHANG Fan1, LONG Weimin2
1 College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2 China Innovation Academy of Intelligent Equipment (Ningbo) Co., Ltd., Ningbo 315700, Zhejiang, China
下载:  全 文 ( PDF ) ( 19809KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了Sm对SAl 4043铝合金焊丝组织、性能及氢含量的影响。结果表明,Sm的添加不仅能细化α-Al基体,使粗大的柱状晶细化为等轴晶,还能对共晶硅起到变质作用,使共晶硅形貌由粗大的层片状或长针状转变为短棒状和颗粒状,并弥散分布于晶界处。由于Sm元素的晶粒细化作用和对共晶硅的变质作用,Sm含量为0.4%(质量分数,下同)的铸态合金的抗拉强度和延伸率分别为140 MPa、8.5%,与未添加Sm的SAl 4043铝合金焊丝相比提高了25%、49%。同时,加入适量的Sm可以使铸态合金焊丝中的氢含量降低至0.15 mL/100 g Al,与未添加Sm的合金焊丝相比,氢含量降低59%;焊接接头拉伸试验结果表明,合金焊丝中适量Sm的加入可以改善接头力学性能,并降低焊缝气孔率,当Sm含量为0.4%时,焊接接头力学性能最好,抗拉强度和延伸率分别为180.4 MPa、10.20%,焊缝气孔率仅为0.16%,与未添加Sm的焊丝所得接头相比,焊缝气孔率降低71%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄智恒
薛松柏
王博
张帆
龙伟民
关键词:  稀土钐  SAl 4043铝合金焊丝  显微组织  力学性能    
Abstract: The effect of Sm element on the microstructure, properties and hydrogen content of SAl4043 aluminum alloy welding wire was studied. The results show that the addition of Sm can refine the α-Al matrix and modify the eutectic silicon, the short-rod like and granular eutectic silicon are dispersedly distributed at the grain boundaries. The addition of Sm significantly improves the mechanical properties of the as-cast welding wire alloy because of the grain refinement and modiffication effect of Sm element. When 0.4wt% Sm is added, the alloy’s tensile strength reaches 140 MPa, and the elongation is 8.5%, which is 25% and 49% higher than that when no Sm is added. At the same time, the addition of Sm can significantly reduce the hydrogen content of the as-cast welding wire alloy, the minimum content reaches 0.15 mL/100 g Al when 0.4wt% Sm is added, compared with the alloy welding wire without Sm, the hydrogen content is reduced by 59%. The joint test indicates that the addition of Sm to the welding wire improves the mechanical properties and bending performance by reducing the weld porosity. When the content of Sm is 0.4wt%, the tensile strength and elongation reached 180.4 MPa and 10.2% respectively. At the same time, compared with that of Sm free one, the porosity of the weld is significantly reduced by 71%, only 0.16%.
Key words:  samarium    SAl 4043 aluminum alloy welding wire    microstructure    mechanical property
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TG422.3  
基金资助: 国家自然科学基金(51975284)
通讯作者:  * 薛松柏,1981年12月获湖南大学理学学士学位;1987年5月获上海交通大学工学硕士学位;2002年4月获哈尔滨工业大学材料加工工程学科工学博士学位;现任南京航空航天大学材料科学与技术学院二级教授、研究员、博士研究生研导师。主要研究先进连接技术、微电子组装与封装、焊接新工艺与新装备、焊接新材料设计与制备等。在国内外学术刊物上发表论文410余篇,SCI收录220余篇,EI收录160余篇,主持制定了五项国家标准、五项机械工业部行业标准并发布实施;获得国家科技进步奖二等奖2项。xuesb@nuaa.edu.cn   
作者简介:  黄智恒,2019年6月毕业于沈阳航空航天大学,获得工学学士学位。现为南京航空航天大学材料科学与技术学院硕士研究生,在薛松柏教授的指导下进行研究。目前主要从事先进连接技术方面的工作。
引用本文:    
黄智恒, 薛松柏, 王博, 张帆, 龙伟民. Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响[J]. 材料导报, 2023, 37(1): 21080231-6.
HUANG Zhiheng, XUE Songbai, WANG Bo, ZHANG Fan, LONG Weimin. Effect of Sm on Microstructure, Properties and Hydrogen Content of SAl 4043 Aluminum Alloy Welding Wire. Materials Reports, 2023, 37(1): 21080231-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080231  或          http://www.mater-rep.com/CN/Y2023/V37/I1/21080231
1 Ahmad R, Bakar M A. Materials & Design, 2011, 32(10), 5120.
2 Le Maoût N, Thuillier S, Manach P Y. Engineering Fracture Mechanics, 2009, 76(9), 1202.
3 Jha A K, Sreekumar K. Engineering Failure Analysis, 2009, 16(7), 2433.
4 Syrigou M S, Dow R S. Engineering Structures, 2018, 166, 128.
5 Peng H, Jiang S C, Zhao Y Y. China Civil Engineering Journal, 2009, 42(7), 46(in Chinese).
彭航, 蒋首超, 赵媛媛. 土木工程学报, 2009, 42(7), 46.
6 Wang B. Effect of alloying elements and smelting technology on hydrogen content & the weld properties of Al-Si wires. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2019(in Chinese).
王博. 合金元素、冶炼工艺对铝硅焊丝氢含量及焊缝性能的影响. 博士学位论文, 南京航空航天大学, 2019.
7 Zhao Z H, Xu Z, Wang G S, et al. Acta Metallurgica Sinica, 2013, 49(8), 946(in Chinese).
赵志浩, 徐振, 王高松, 等. 金属学报, 2013, 49(8), 946.
8 Mao F, Yan G, Xuan Z, et al. Journal of Alloys and Compounds, 2015, 650, 896.
9 Zhang P, Xue S B, Fei W P, et al. Materials Reports B:Research Papers, 2020, 34(1), 2100(in Chinese).
张鹏, 薛松柏, 费文潘, 等. 材料导报:研究篇, 2020, 34(1), 2100.
10 Fei W P, Xue S B, Chen Y H, et al. Materials Reports B:Research Papers, 2020, 34(5), 10150(in Chinese).
费文潘, 薛松柏, 陈宇豪, 等. 材料导报:研究篇, 2020, 34(5), 10150.
11 Qiu H, Yan H, Hu Z. Journal of Materials Research, 2014, 29(11), 1270.
12 Dong Y H, Jia Z H, Wen B Y, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(3), 479(in Chinese).
董衍蘅, 贾志宏, 温柏杨, 等. 中国有色金属学报, 2020, 30(3), 479.
13 Qiu H, Yan H, Hu Z. Journal of Alloys and Compounds, 2013, 567, 77.
14 Hu Z, Ruan X, Yan H. Transactions of Nonferrous Metals Society of China, 2015, 25(12), 3877.
15 Rao Y S. The modification of Sm on ADC12 alloy & rheological properties of in-stiu Mg2Si/AM60 composites under ultrosonic treatment. Master’s Thesis, Nanchang University, China, 2014(in Chinese).
饶远生. Sm对ADC12变质&超声原位Mg2Si/AM60流变特性研究. 硕士学位论文, 南昌大学, 2014.
16 Lu S, Hellawell A. Metallurgical and Materials Transactions A, 1987, 18, 1721.
17 Kang H S, Yoon W Y, Kim K H, et al. Materials Science and Engineering: A, 2007, 449, 334.
18 Mao F, Yan G, Xuan Z, et al. Metallurgical and Materials Transactions A, 2014, 45(10), 4549.
19 Mcdonald S D, Dahle A K, Taylor J A, et al. Metallurgical and Materials transactions A, 2004, 35(6), 1829.
20 Yu Y, Ji C C, Li J G, et al. Journal of the Chinese Society of Rare Earths, 2003, 21(1), 49(in Chinese).
于赟, 季诚昌, 李建国, 等. 中国稀土学报, 2003, 21(1), 49.
21 Ouyang Z Y, Mao X M, Mei H. Special Casting & Nonferrous Alloys, 2006, 26(10), 666(in Chinese).
欧阳志英, 毛协民, 梅红. 特种铸造及有色合金, 2006, 26(10), 666.
22 Wang X Q, Ding W Z. Journal of the Chinese Society of Rare Earths, 2002, 20(20), 241(in Chinese).
王晓秋, 丁伟中. 中国稀土学报, 2002, 20(20), 241.
[1] 杨正宏, 刘思佳, 吴凯, 于龙, 潘峰. 纤维增强磷酸镁水泥基复合材料研究进展[J]. 材料导报, 2023, 37(1): 20110150-7.
[2] 肖述广, 谢志雄, 陈卓, 陈琪, 董仕节, 解剑英. 薄壁3003铝合金管高频感应焊焊接接头微观组织及力学性能研究[J]. 材料导报, 2023, 37(1): 21080147-6.
[3] 薛海涛, 李涛, 郭卫兵, 陈翠欣, 赵江龙, 丁志杰. 钎焊参数对Al2O3陶瓷/304不锈钢接头组织和性能的影响[J]. 材料导报, 2023, 37(1): 21090089-5.
[4] 刘忠柱, 赵伟, 潘玮, 李睢水, 郑国强, 李倩. 多壁碳纳米管改性等规聚丙烯复合材料的结构及性能研究[J]. 材料导报, 2023, 37(1): 20100004-6.
[5] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[6] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[7] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[8] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[9] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[10] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[11] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[12] 王艺橦, 潘栋, 侯华兴, 郭庆涛, 李天怡, 厉文墨, 肖玉宝, 江坤. 高能电脉冲处理对金属材料强化和增韧作用影响的研究新进展[J]. 材料导报, 2022, 36(Z1): 21080093-7.
[13] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[14] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[15] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed