Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3833-3836    https://doi.org/10.11896/cldb.18100099
  高分子与聚合物基复合材料 |
苯乙烯-丙烯酸甲酯共聚物对聚乳酸/SBS共混物相容性的影响
王博成,刘桅,涂征,吴崇刚,石彪,胡涛,龚兴厚
湖北工业大学材料与化学工程学院,绿色轻工材料湖北省重点实验室,绿色轻质材料与加工湖北工业大学协同创新中心,武汉 430068
Impact of Poly(Styrene-co-Methyl Acrylate) on the Compatibility of Polylactide/SBS Blends
WANG Bocheng, LIU Wei, TU Zheng, WU Chonggang, SHI Biao, HU Tao, GONG Xinghou
Collaborative Innovation Center of Green Light-weight Materials and Processing, and School of Materials and Chemical Engineering, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068
下载:  全 文 ( PDF ) ( 1978KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用苯乙烯(St)-丙烯酸甲酯(MA)无规共聚物(PSMA)(nSt∶nMA=75∶25)为增容剂,通过双螺杆挤出机将聚乳酸(PLA)与苯乙烯-丁二烯-苯乙烯(SBS)三嵌段共聚物熔融共混,研究了PSMA的含量对PLA/SBS共混物(mPLA∶mSBS=90∶10)相容性的影响。利用扫描电子显微镜、万能拉伸试验机、差示扫描量热仪和旋转流变仪对共混物的微观形貌、力学性能、热性能和流变性能进行表征。SEM结果表明,加入1%(质量分数)的PSMA使PLA/SBS共混物中SBS相分散更均匀,界面粘接增强。加入1%(质量分数)PSMA的PLA/SBS共混物的断裂伸长率和冲击强度分别是PLA的7.1倍和2.3倍。DSC和流变学结果表明,PSMA的加入增强了PLA和SBS的相容性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王博成
刘桅
涂征
吴崇刚
石彪
胡涛
龚兴厚
关键词:  聚乳酸  苯乙烯-丁二烯-苯乙烯三嵌段共聚物  苯乙烯-丙烯酸甲酯无规共聚物  相容性    
Abstract: Taking random copolymer poly(styrene-co-methyl acrylate) (PSMA) (nSt∶nMA=75∶25) as compatibilizer, we conducted the melt blending of the polylactide (PLA) and the triblock copolymer styrene-butadiene-styrene (SBS) on a twin-screw extruder, and explored the impact of PSMA content on the compatibility of PLA/SBS (mPLAmSBS=90∶10) blends. Furthermore, the scanning electron microscope, universal tensile testing machine, differential scanning calorimeter and rotary rheometer were employed to characterize the microstructure, mechanical properties, thermal properties and rheological properties of PLA/SBS blends. It could be observed by SEM that adding 1wt% PSMA enabled uniform dispersion of SBS in PLA/SBS blends and enhanced the interfacial adhesion of PLA/SBS blends as well. Meanwhile, the elongation and impact strength of PLA/SBS blends with 1wt% PSMA were 7.1 and 2.3 times of those of pure PLA, respectively. Besides, DSC and rheological results indicated an improved compatibility of PLA and SBS by the addition of PSMA.
Key words:  polylactide (PLA)    styrene-butadiene-styrene (SBS) triblock copolymer    poly(styrene-co-methyl acrylate) (PSMA)    compatibility
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  TQ323.4  
基金资助: 国家自然科学基金(51173039)
作者简介:  王博成,湖北工业大学材料与化学工程学院,硕士研究生,主要从事生物降解高分子共混物及复合材料的研究。
龚兴厚,湖北工业大学材料与化学工程学院教授、硕士研究生导师。2006年在华中科技大学取得材料学博士学位,2016年在美国阿克伦大学访学。主要从事生物功能高分子材料的研究,在国内外重要期刊发表文章30多篇。
引用本文:    
王博成, 刘桅, 涂征, 吴崇刚, 石彪, 胡涛, 龚兴厚. 苯乙烯-丙烯酸甲酯共聚物对聚乳酸/SBS共混物相容性的影响[J]. 材料导报, 2019, 33(22): 3833-3836.
WANG Bocheng, LIU Wei, TU Zheng, WU Chonggang, SHI Biao, HU Tao, GONG Xinghou. Impact of Poly(Styrene-co-Methyl Acrylate) on the Compatibility of Polylactide/SBS Blends. Materials Reports, 2019, 33(22): 3833-3836.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100099  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3833
[1] Feng R H. Matericals Review A:Review Papers, 2014, 28(5), 119(in Chinese).冯瑞华. 材料导报:综述篇, 2014, 28(5), 119.
[2] Liu H Z, Zhang J W. Journal of Polymer Science Part B: Polymer Phy-sics, 2011, 49, 1051.
[3] Libio I C, Grassi V G, Dal Pizzol M F, et al. Journal of Applied Polymer Science, 2012, 126, 179.
[4] Yang J, Nie S, Zhu J. Journal of Applied Polymer Science, 2016, 133(17), 43340.
[5] Wu C P, Wang C C, Chen C Y. Polymer-Plastics Technology and Engineering, 2015, 54, 1043.
[6] Wang Y, Wei Z, Li Y. European Polymer Journal, 2016, 85, 92.
[7] Gao X, Wang M, Chen Y H, et al. Polymer Materials Science and Engineering, 2017, 33(4), 69(in Chinese).高翔, 王敏, 陈业煌, 等. 高分子材料科学与工程, 2017, 33(4), 69.
[8] Gong X H, Gao X, Tang C Y, et al. Journal of Applied Polymer Science, 2018, 135, 45799.
[9] Zhang B, Bian X C, Xiang S, et al. Polymer Degradation and Stability, 2017, 136, 58.
[10] Shieh Y T, Liu G L. Journal of Polymer Science: Part B: Polymer Phy-sics, 2007, 45, 466.
[11] Gong X H, Pan L, Tang C Y, et al. Composites Part B: Engineering, 2016, 91, 103.
[12] Lin Z D, Guan Z X, Xu B F, et al. Journal of Industrial and Enginee-ring Chemistry, 2013, 19, 692.
[13] Zhou Y X, Huang Z G, Diao X Q, et al. Polymer Testing, 2015, 42,17.
[14] He Y, Fan Z Y, Hu Y F, et al. European Polymer Journal, 2007, 43, 4431.
[15] Wang R, Yang Q, Huang Y J, et al. Atca Polymerica Sinica, 2010(9), 1108(in Chinese).王蕊, 杨其, 黄亚江, 等. 高分子学报, 2010(9), 1108.
[16] Li R M, Yu W, Zhou C X. Polymer Bulletin, 2006, 56, 455.
[17] Han C D, Kim J. Journal of Polymer Science: Part B: Polymer Physics, 1987, 25(8), 1741.
[18] Han C D. Journal of Applied Polymer Science, 1988, 35(1), 167.
[19] Cole K S, Cole R H. Journal of Chemical Physics, 1941, 9(4), 341.
[1] 王异彩, 张甜, 李媛. 光聚合PEXS-A水凝胶材料的合成及包埋活细胞的性能[J]. 材料导报, 2020, 34(2): 2169-2173.
[2] 曾德鹏, 余森, 王岚, 于振涛, 刘印, 盖晋阳, 代晓军. 医用金属材料表面自身纳米化研究进展[J]. 材料导报, 2019, 33(Z2): 343-347.
[3] 赵西坡, 胡欢, 熊娟, 王鑫, 余晓磊, 彭少贤. 弹性体共混改性聚乳酸(PLA)高韧性共混物研究进展[J]. 材料导报, 2019, 33(Z2): 590-598.
[4] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[5] 余鹏, 项佩, 高金玲, 李媛. 基于相形态结构的PLA/PBS共混物微孔发泡行为[J]. 材料导报, 2019, 33(20): 3524-3530.
[6] 常悦, 陈支泽, 杨一奇. 聚乳酸-聚己内酯多嵌段立构复合物薄膜的制备及熔融稳定性[J]. 材料导报, 2019, 33(16): 2808-2812.
[7] 彭少贤,蔡小琳,胡欢,赵西坡. 环境友好型增塑剂增韧聚乳酸的最新研究进展[J]. 材料导报, 2019, 33(15): 2617-2623.
[8] 付晓刚, 张金权, 秦博, 马浩然, 龙斌. 氢化锆与高温钠的相容性研究[J]. 材料导报, 2019, 33(11): 1801-1804.
[9] 王鑫, 石敏, 余晓磊, 彭少贤, 赵西坡. 聚己二酸对苯二甲酸丁二酯(PBAT)共混改性聚乳酸(PLA)高性能全生物降解复合材料研究进展[J]. 材料导报, 2019, 33(11): 1897-1909.
[10] 李 款,潘友强,张 辉,陈李峰,张 健. 钢桥面铺装用环氧沥青相容性研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1534-1540.
[11] 赵西坡, 刘畅, 徐敏, 彭少贤. 无机成核剂改善聚乳酸结晶性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1158-1164.
[12] 阮世超, 罗丹丹, 郝亚, 白雪, 陈岑. 氧化铱/聚多巴胺/层粘连蛋白仿生涂层的制备[J]. 材料导报, 2018, 32(24): 4351-4356.
[13] 桑练勇, 胡志德, 晏华, 代军, 张寒松. 可降解材料聚碳酸亚丙酯和聚乳酸的溶度参数与相容性[J]. 材料导报, 2018, 32(22): 3948-3953.
[14] 钟红荣, 张岩, 包红, 方艳, 吴婷芳, 朱勇, 张小宁, 徐水. 丝素/明胶/壳聚糖支架材料的构建及表征[J]. 材料导报, 2018, 32(22): 3954-3960.
[15] 代晓军, 杨西荣, 王昌, 徐鹏, 赵曦, 于振涛. 生物医用可降解锌基合金的研究进展[J]. 材料导报, 2018, 32(21): 3754-3759.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[5] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[8] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed