Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7020-7025    https://doi.org/10.11896/cldb.19040099
  材料与可持续发展(三)环境友好——环境友好材料与环境修复材料* |
石墨烯气凝胶的废水吸附性能研究进展
曹新鑫, 李福昌
河南理工大学材料科学与工程学院,焦作 454000
Research Progress on Adsorption Performance of Graphene Aerogel in Wastewater
CAO Xinxin, LI Fuchang
School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
下载:  全 文 ( PDF ) ( 3603KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯气凝胶(Graphene aerogel,GA)因具有极大的比表面积、易修饰的表面和独特的多孔结构,成为一种处理废水的理想吸附剂,可以满足对油类、染料和重金属离子的吸附。近年来,针对GA吸附的改性研究报道逐渐增多,研究的热点主要是提高其吸附容量、扩大可处理的废液范围。
   在加入各种聚合物、金属离子、无机物等修饰石墨烯本身的吸附位点时,研究者需要在吸附位点的减少和修饰带来的吸附容量的增加这两个因素之间进行权衡。设置合适的添加物参数比既能保证吸附容量达到最大值,也能获得稳定性和重复利用性高的吸附材料,这是当前GA研究的关键问题。相比吸附剂石墨烯,改性GA具有的优势主要有:(1)研究者可充分利用单片层石墨烯具有的较大的比表面积和大量的官能团改变表面结构、增大吸附容量;(2)本身具有的较大的孔隙率可显著改善吸附效果。
   为提高GA对油的吸附容量,可添加乙二胺(EDA)、聚乙烯醇(PVA)、碳纳米管来增大GA的比表面积,提高GA的稳定性;添加有机物硬脂酸(SA)还可增强GA的亲油性;掺杂氮可提供更大的比表面积和有效的吸附面积。为提高GA对染料的吸附效率,可添加聚多巴胺(PDA)提高GA多孔结构的稳定性,还可通过调节添加物的质量比来提高孔隙度和结构稳定性、改善吸附容量;加入聚乙烯亚胺可以借助静电吸引力和π-π交互作用以提高GA的吸附容量;掺杂改性氮、硫可提供活性吸附位点和增强结构稳定性;引入醋酸纤维素改善薄片过度堆积的情况,还可进一步改性GA以满足吸附要求。为提高对重金属离子的吸附效果,可通过添加二硫化钼纳米颗粒、氮源四乙烯五胺和聚吡咯、真菌菌丝来调节GA表面电荷和增大其吸附作用;也可引入蒙脱土、PDA来调节孔隙大小、改善结构;还可通过添加聚乙烯醇,利用静电相互作用提高GA的吸附容量。
   本文综述了改性GA在废水吸附方面的研究进展,介绍其对含油废水、染料污水和重金属离子废水的吸附容量和主要吸附机理,分析改性GA面临的问题并展望其应用前景,以期对合成吸附容量大、稳定性好、可重复利用性强的改性GA提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹新鑫
李福昌
关键词:  石墨烯气凝胶  吸附    染料  重金属离子    
Abstract: Graphene aerogel is an ideal adsorbent for treating wastewater due to its extremely large specific surface area, easy-to-modify surface and unique porous structure, which can satisfy the adsorption for oil, dye and heavy metal ions. In recent years, research reports on the modification of graphene aerogel adsorption have gradually increased. The research focus is mainly on increasing the adsorption capacity and expanding the range of processible waste liquid.
When adding various polymers, metal ions, inorganic substances, etc. to modify the adsorption sites of graphene itself, researchers need to make a trade-off between the reduction of adsorption sites and the increase of adsorption capacity due to modification. Setting the appropriate additive parameter ratio, which not only ensures the maximum adsorption capacity, but also obtains highly stable and reusable adsorbent materials, is a key issue in current graphene aerogel research. Compared with the adsorbent graphene, the modified graphene aerogel has the advantages: (1) The researcher can make full use of the higher specific surface area of the monolayer graphene and a large number of functional groups to change the surface structure and increase the adsorption capacity. (2) Its dense porosity can greatly improve the adsorption effect.
In order to increase the adsorption capacity for oil, the specific surface area and stability of graphene aerogel can be improved by adding ethy-lenediamine (EDA), polyvinyl alcohol (PVA) and carbon nanotubes. Adding organic stearic acid (SA) also enhances lipophilicity of graphene aerogel. Doping nitrogen provides a larger specific surface area and effective adsorption area. In order to improve the adsorption efficiency for dyes, the stability of porous structure of graphene aerogel can be improved by adding polydopamine (PDA), which can also adjust the mass ratio of additives to improve porosity and structural stability and adsorption capacity. The addition of polyethyleneimine can increase the adsorption capacity by electrostatic attraction and π-π interaction. Doping modified nitrogen and sulfur can provide active adsorption sites and enhance structu-ral stability. The introduction of cellulose acetate can improve the excessive accumulation of flakes. It can be further modified to meet adsorption requirements. In order to improve the adsorption effect on heavy metal ions,the surface charge can be adjusted and the adsorption can be increased by adding molybdenum disulfide nanoparticles, nitrogen source tetraethylene pentamine and polypyrrole and fungal hyphae. Montmorillonite and PDA can be introduced to adjust pore size and improve structure. The adsorption capacity can be increased with electrostatic interaction by adding polyvinyl alcohol.
This paper reviews the research progress of modified graphene aerogel in wastewater adsorption, introduces its adsorption capacity and main mechanism for oily wastewater, dye wastewater and heavy metal ion wastewater. The problem and prospects are expected to provide reference for the modified graphene aerogel with large synthetic adsorption capacity, good stability and high recyclability.
Key words:  graphene aerogel    adsorption    oil    dye    heavy metal ions
                    发布日期:  2020-04-10
ZTFLH:  TB34  
  X522  
  O647.3  
通讯作者:  cxxhxf@126.com   
作者简介:  曹新鑫,河南理工大学材料科学与工程学院副院长,副教授、硕士研究生导师。长期从事高分子聚合物加工、改性、应用的研究工作,以第一作者或通讯作者在Polymer BulletinJournal of Applied Polymer ScienceE-Polymer、《高分子材料科学与工程》等学术期刊发表学术论文30余篇,授权发明专利2项,出版学术专著1部。
李福昌,获得河南理工大学工学学士学位。目前在曹新鑫副教授的指导下进行研究,主要研究领域为改性石墨烯气凝胶在含油、染料、重金属废水中的吸附性能。
引用本文:    
曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
CAO Xinxin, LI Fuchang. Research Progress on Adsorption Performance of Graphene Aerogel in Wastewater. Materials Reports, 2020, 34(7): 7020-7025.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040099  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7020
1 Castro A R, Silva P T S, Castro P J G, et al.Water Research, 2018, 144,532.
2 Jose L Diaz de Tuesta, Adrian M T Silva, Joaquim L Faria, et al.Chemical Engineering Journal, 2018, 347,963.
3 Lv Lijuan, Huang Yan, Cao Dapeng. Applied Surface Science, 2018, 456,184.
4 Zhang Jing, Chen Shuo, Zhang Ying, et al. Journal of Hazardous Mate-rials, 2014, 274,198.
5 Mao Lingqiang, Tang Runzhi, Wang Yichao, et al. Journal of Cleaner Production, 2018, 187, 616.
6 Minhaz Ahmed, Masaru Matsumoto, Kiyoshi Kurosawa. International Journal of Environmental Research, 2018, 12(4), 531.
7 Li Rui, Tang Chanyuan, Li Xing, et al. Science of the Total Environment, 2019, 649, 448.
8 Chen Cheng, Zhu Xiaoying, Chen Baoliang. Chemical Engineering Journal, 2018, 354, 896.
9 Xiao Jianliang, Zhang Jifei, Lv Weiyang, et al. Carbon, 2017, 123,354.
10 Han Qiaoqiao, Chen Lei, Li Wenxiao, et al. Environmental Science and Pollution Research International, 2018, 25(34),34438.
11 Wu Lirui, Qin Ziyi, Zhang Lanxin, et al. New Journal of Chemistry, 2017, 41(7),2527.
12 Tabrizi N S, Zamani S. Water Science and Technology, 2016, 74(1),256.
13 Ren Xiaohua, Guo Huanhuan, Ma Xiaoxin, et al. Applied Surface Science, 2018,457, 780.
14 Alessandro E C Granato, Bruno V M Rodrigues, Dorival M Rodrigues-Junior, et al. Materials Science & Engineering C- Materials for Biological Applications, 2016, 67, 694.
15 Zhang Jingjie, Wu Yuhui, Mei Jinya, et al. Photochemical & Photobiological Sciences, 2016, 15(8),1012.
16 Xu Zhaoyang, Zhou Huan, Tan Sicong, et al. Beilstein Journal of Nanotechnology, 2018, 9, 508.
17 Yu Xue, Wu Peiwen, Liu Youchang, et al. Journal of Fuel Chemistry and Technology, 2017, 45(10),1230.
18 Zhao Da, Yu Li, Liu Dongxu. Materials, 2018, 11(4),641.
19 Huang Jiankun, Liu Hui’e, Huang Yangfan, et al. CIESC Journal, 2016,67(12),5048(in Chinese).
黄剑坤,刘会娥,黄扬帆, 等.化工学报, 2016,67(12),5048.
20 Huang Yangfan, Liu Hui’e, Wang Zhenyou, et al. Journal of Chemical Engineering of Chinese Universities, 2018,32(4),940(in Chinese).
黄扬帆,刘会娥,王振有, 等.高校化学工程学报, 2018,32(4),940.
21 Guo Xiaoqing, Qu Lijun, Zhu Shifeng, et al. Water Environment Research, 2016, 88(8), 768.
22 Cao Jingjing, Wang Ziyuan, Yang Xianhou, et al. Applied Surface Science, 2018, 444, 399.
23 Mark Jbeily, Christian Schwieger, Joerg Kressler. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2017, 529,274.
24 Zahra Rahmani, Ali Morad Rashidi, Abbass kazemi, et al. Journal of Industrial and Engineering Chemistry, 2018, 61, 416.
25 Zhang Kaili, Du Qingchuan, Yan Chao. Materials Review, 2017,31(S2),219(in Chinese).
张凯丽,堵晴川,晏超.材料导报, 2017,31(S2),219.
26 Yang Qingxiang, Lu Ran, Ren Shuangshuang, et al. Chemical Enginee-ring Journal, 2018, 348, 202.
27 Zhao Qiang, Zhu Xiaoying, Chen Baoliang. Chemical Engineering Journal, 2018, 334, 1119.
28 Shu Di, Feng Feng, Han Hongliang, et al. Chemical Engineering Journal, 2017, 324,1.
29 Kong Qiaoping, Wei Chaohai, Preis Sergei, et al. Environmental Science and Pollution Research, 2018, 25(21), 21164.
30 Huang Ting, Dai Jian, Yang Jinghui, et al. Diamond & Related Mate-rials, 2018, 86, 117.
31 Xiao Jianliang, Lv Weiyang, Song Yihu, et al. Chemical Engineering Journal, 2018, 338, 202.
32 Li Yi, Li Luyan, Chen Tao, et al. Chemical Engineering Journal, 2018, 347, 407.
33 Liao Yun, Wang Meng, Chen Dajun. Industrial & Engineering Chemistry Research, 2018, 57(25), 8472.
34 Zhang Yunyun, Yan Xueru, Yan Yayuan, et al. RSC Advances, 2018, 8(8), 4239.
35 Liang Qianwei, Luo Hanjin, Geng Junjie, et al. Chemical Engineering Journal, 2018,338, 62.
36 Chen Bo, Bi Hengchang, Ma Qinglang, et al. Science China Materials, 2017, 60(11), 1102.
37 Jiseon Jang, Dae Sung Lee.Journal of Nuclear Materials, 2018, 504,206.
[1] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[2] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[3] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[4] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[5] 杨福生, 张妍, 刘小斌, 陈永哲, 杨武. 种子生长法构筑超疏水-超亲油滤纸及其在油水分离中的应用[J]. 材料导报, 2020, 34(4): 4132-4136.
[6] 那立艳, 张丽影, 张凤杰, 华瑞年. 室温非有机体系中HKUST-1的快速制备及对活性蓝194的吸附[J]. 材料导报, 2020, 34(4): 4137-4141.
[7] 张筱烨, 孙赫宇, 何洋, 李健健, 冯霞, 赵义平, 陈莉. PVDF/PAMAM复合膜的制备及对铜离子的吸附性能[J]. 材料导报, 2020, 34(4): 4142-4147.
[8] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051.
[9] 崔巍, 宋日悬, 肖忠民, 冯子明, 冷德成, 董康兴, 张强, 杨志军. X80油气管道焊缝双裂纹干涉效应多场耦合数值模拟方法[J]. 材料导报, 2020, 34(2): 2131-2136.
[10] 贾颖. Li在石墨烯表面吸附与迁移的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 43-47.
[11] 林青, 李玲玲, 陈文远, 张爽, 王威, 张小娟, 郝凌云. 通过改进前驱体制备具有特异光学性能的油烟墨[J]. 材料导报, 2019, 33(Z2): 61-64.
[12] 黄泰愚, 范舟, 刘建仪. 硫在镍基合金钝化膜NiO表面吸附的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 380-382.
[13] 蒋芳, 雷婷, 李声剑, 任子旋, 王利莲, 刘萌, 汤立红, 王世雄. 聚合物吸附剂的制备及在水体重金属污染净化应用中的研究进展[J]. 材料导报, 2019, 33(Z2): 526-532.
[14] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[15] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed