Abstract: High operating temperature or large temperature difference of lithium-ion battery will reduce its capacity and lifetime. In order to reduce the operating temperature and temperature difference, a spider web channel cooling plate was designed. And the heat dissipation of lithium-ion battery was calculated with the coolant counter current in the channel of the cooling plate by numerical method. The heat dissipation of lithium-ion battery with the coolant in counter current was compared with its heat dissipation with the coolant in co-current. And the effects of flow rate, channel angle, groove depth and wall thickness on the battery heat dissipation were analyzed. The results show that the maximum temperature and temperature difference of the battery cooled with the coolant in counter current are lower than those with the coolant in co-current, and the tempe-rature distribution of the battery is more uniform. In the range of 0.02—0.06 kg/s, with the increase of coolant flow rate, the maximum temperature and temperature difference of the battery decrease rapidly, while the cooling hydraulic drop increases slowly. However, when the coolant flow rate is greater than 0.06 kg/s, with the increase of coolant flow rate, the maximum temperature and temperature difference of the battery decrease slowly, while the cooling hydraulic drop increases rapidly. Increasing the channel angle can make the channel distribution more uniform in the cooling plate and improve the cooling capacity of the cooling plate. Under the condition of the constant of the mass flow rate of coolant, increasing the channel groove depth can greatly reduce the cooling hydraulic drop, but it will cause the maximum temperature and temperature difference of the battery to increase slightly. With the increase of the wall thickness of the flow channel, the maximum temperature and temperature difference of the battery show a downward trend. The maximum temperature and temperature difference of 3C discharge of lithium-ion battery can be reduced to 31.02 ℃ and 4.54 ℃ under the conditions of channel angle 80°, groove depth 1 mm, wall thickness 2 mm and coolant flow rate 0.06 kg/s.
通讯作者:
*刘显茜,昆明理工大学机电工程学院副教授、硕士研究生导师,2010年6月在昆明理工大学获工学博士学位,目前主要从事强化传热、微纳米结构传热等研究工作,主持参与国家自然科学基金、云南省自然科学基金七项。担任国家自然科学基金等的评审专家。截至目前,在Surface Innovations、Heat and Mass Transfer、Chemical Engineering and Processing: Process Intensification、Environmental Science and Pollution、《材料导报》《硅酸盐学报》《农业机械学报》等国际国内核心期刊上发表SCI、EI论文51篇。授权国家发明专利10余项。xxiliu@tom.com
引用本文:
刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
LIU Xianxi, CAO Junlei, LI Wenhui, ZENG Pu. Analysis of Lithium-ion Battery Heat Dissipation with Coolant Counter Current in Spider Web Channel Cooling Plate. Materials Reports, 2024, 38(4): 22070040-6.
1 Yang X L, Duan Y K, Feng X N, et al. Fire Technology, 2020, 56(6), 2579. 2 Yu J W, Chen Y L, Fan G H, et al. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(12), 2788 (in Chinese). 余剑武, 陈亚玲, 范光辉, 等. 吉林大学学报(工学版), 2022, 52(12), 2788. 3 Jin L, Xie P, Zhao Y Q, et al. Materials Reports, 2021, 35(21), 21113 (in Chinese). 金露, 谢鹏, 赵彦琦, 等. 材料导报, 2021, 35(21), 21113. 4 Yates M, Akrami M, Javadi A A. Journal of Energy Storage, 2021, 33, 107588. 5 Hong S H, Jang D S, Park S, et al. Applied Thermal Engineering, 2020, 173, 115213. 6 Wang X, Xu J, Ding Y J, et al. Energy Storage Science and Technology, 2022, 11(2), 547 (in Chinese). 王翔, 徐晶, 丁亚军, 等. 储能科学与技术, 2022, 11(2), 547. 7 Liu J W, Li H, Li W Y, et al. Applied Thermal Engineering, 2020, 164, 114421. 8 Feng X N, Xu C S, He X M, et al. Journal of Cleaner Production, 2018, 205, 447. 9 Liu X X, Sun A L, Tian C. Energy Storage Science and Technology, 2022, 11(7), 2266 (in Chinese). 刘显茜, 孙安梁, 田川. 储能科学与技术, 2022, 11(7), 2266. 10 Huang F X, Zhao J. Modern Manufacturing Engineering, 2019(11), 62 (in Chinese). 黄富霞, 赵津. 现代制造工程, 2019(11), 62. 11 Sheng L, Su L, Zhang H, et al. International Journal of Heat and Mass Transfer, 2019, 141, 658. 12 Pan C F, Liu B, Chen L, et al. Journal of Southwest Jiaotong University, 2020, 55(1), 68 (in Chinese). 盘朝奉, 刘兵, 陈龙, 等. 西南交通大学学报, 2020, 55(1), 68. 13 Deng T, Zhang G D, Ran Y, et al. Applied Thermal Engineering, 2019, 160, 114088. 14 Tang W, Ding H, Xu X M, et al. Journal of Renewable and Sustainable Energy, 2020, 12(4), 045701. 15 Cai S L, Wei M S, Song P P, et al. Journal of Automotive Safety and Energy, 2021, 12(3), 380 (in Chinese). 蔡森林, 魏名山, 宋盼盼, 等. 汽车安全与节能学报, 2021, 12(3), 380. 16 Ouyang C Z. Thermal analysis and optimization of lithium-ion power batter. Master’s Thesis, Changsha University of Science and Technology, China, 2013 (in Chinese). 欧阳陈志. 锂离子动力电池热分析及优化. 硕士学位论文, 长沙理工大学, 2013. 17 Xu H W, Zhang X, Xiang G, et al. Case Studies in Thermal Enginee-ring, 2021, 26, 101012. 18 Cho G Y, Choi J W, Park J H, et al. International Journal of Automotive Technology, 2014, 15(5), 795. 19 Wu X Y, Zhang H Y, Zhu Z H, et al. Journal of Engineering Thermophysics, 2020, 41(7), 1784 (in Chinese). 吴笑宇, 张恒运, 朱泽华, 等. 工程热物理学报, 2020, 41(7), 1784. 20 Ding Y Z, Ji H C, Wei M X, et al. International Journal of Heat and Mass Transfer, 2022, 183, 122178. 21 Yang Y. Study on lithium-ion battery liquid cooling system of pure electric vehicle. Master’s Thesis, South China University of Technology, China, 2018 (in Chinese). 杨洋. 纯电动汽车锂离子电池组液冷散热系统研究. 硕士学位论文, 华南理工大学, 2018.