Fundamental Study of Rare-earth-containing Catalytic Reduction Systems for End-group Functionalization of Telechelic Low-molecular-weight Fluoropolymers
LI Donghan1,2,*, NING Shurui2, YU Lu2, LIAO Mingyi3, ZHANG Mengxia1, YOU Shibo1, FANG Qinghong1,2
1 College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China 2 Liaoning Provincial Key Laboratory of Rubber & Elastomer, Shenyang University of Chemical Technology, Shenyang 110142, China 3 College of Transportation Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
Abstract: Herein the use of rare-earth compounds in catalytic reduction systems for the end-group functionalization of carboxyl-terminated low-molecular-weight fluoropolymers was explored. Leveraging the high catalytic activity and selectivity of rare-earth compounds along with no residual impact on polymer product's performance, highly efficient catalytic reduction systems containing sodium borohydride (NaBH4) and rare-earth chloride (RECl3) were specifically designed for a telechelic carboxyl-terminated liquid fluoroeslastomer, aiming to facilitate the conversion of chai-nend carboxyl groups into hydroxyl groups and improvement in end-group reactivity. To achieve this, lanthanum chloride (LaCl3), cerium chloride (CeCl3), and neodymium chloride (NdCl3) were used separately to form catalytic reduction systems with NaBH4. The effects of solvent dosage, reaction temperature, reaction time length, and reductant dosage on carboxylic conversion were investigated, and the molecular chain structure, molecular weight, and functional group content of the raw materials and the products were analyzed and characterized by means of infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H-NMR), fluorine-19 nuclear magnetic resonance (19F-NMR), gel per-meation chromatography (GPC), and chemical titration. Moreover, the catalytic activity and selectivity of the rare-earth chlorides, as well as the corresponding underlying interactions were discussed. Results indicated that the rare-earth-containing catalytic reduction systems studied in this work could efficiently convert the chain-end carboxyl groups into highly active hydroxyl groups, with a highest conversion up to 87.0% and differing catalytic reduction activities ranked as NaBH4/CeCl3>NaBH4/LaCl3>NaBH4/NdCl3. Compared with the conventional lithium aluminum hydride (LiAlH4) reduction system, the NaBH4/RECl3 systems provide multiple advantages such as mild reaction conditions, high conversion ratio with good selectivity, and environmental innocuity, and are potentially applicable as new reduction-catalysis combinations for the synthesis and functionalization of polymer materials.
李东翰, 宁舒蕊, 于璐, 廖明义, 张梦霞, 尤诗博, 方庆红. 稀土催化还原体系用于遥爪型低分子量含氟聚合物端基官能化的基础研究[J]. 材料导报, 2025, 39(3): 23100154-9.
LI Donghan, NING Shurui, YU Lu, LIAO Mingyi, ZHANG Mengxia, YOU Shibo, FANG Qinghong. Fundamental Study of Rare-earth-containing Catalytic Reduction Systems for End-group Functionalization of Telechelic Low-molecular-weight Fluoropolymers. Materials Reports, 2025, 39(3): 23100154-9.
1 Metals encyclopedia:rare earths. http, ∥baike. asianmetal. cn/metal/re/re. shtml (in Chinese). 金属百科-稀土. http, ∥baike. asianmetal. cn/metal/re/re. shtml. 2 Li Z, Hu J Z. Modern Mining, 2017(2), 97 (in Chinese). 李振, 胡家祯. 现代矿业, 2017(2), 97. 3 Shao J N, Tao W P, Zhang Y X, et al. Handbook of industrial requirements for mineral resources-2014 Revision, Geology Press, China, 2014 (in Chinese). 邵厥年, 陶维屏, 张义勋, 等. 矿产资源工业要求手册 (2014年修订本), 地质出版社, 2014. 4 Fang Y P, Zhang F L, Li X Y, et al. Research report on the development and management of rare earth resources in China, Geology Press, China, 2016 (in Chinese). 方一平, 张福良, 李晓宇, 等. 中国稀土资源开发管理研究报告, 地质出版社, 2016. 5 Zhang S J, Zhang L W, Zhang Y W, et al. Inorganic Chemicals Industry, 2020, 52(1), 9 (in Chinese). 张苏江, 张立伟, 张彦文, 等. 无机盐工业, 2020, 52(1), 9. 6 Han S, Hu H Q, Ren J, et al. Journal of the Chinese Society of Rare Earths, 2022, 40(1), 1 (in Chinese). 韩帅, 胡海强, 任靖, 等. 中国稀土学报, 2022, 40(1), 1. 7 Sun L, Sun Z L, Wang J J, et al. Chinese Rare Earths, 2020, 41(3), 117 (in Chinese). 张莉, 孙兆林, 王久江, 等. 稀土, 2020, 41(3), 117. 8 Su J H, Xu X. Journal of the Chinese Society of Rare Earths, 2021, 39(1), 171 (in Chinese). 苏健洪, 徐信. 中国稀土学报, 2021, 39(1), 171. 9 Lyubov D M, Tolpygin A O, Trifonov A A. Coordination Chemistry Reviews, 2019, 392, 83. 10 Guo Y J, Liu L C, Zhu H L. Chemical Reagents, 2021, 43(7), 865 (in Chinese). 郭亚君, 刘林昌, 朱红林. 化学试剂, 2021, 43(7), 865. 11 Ouyang J. Rare earth catalysts and polymerization, Jilin Science and Technology Press, China, 1991 (in Chinese). 欧阳均. 稀土催化剂与聚合, 吉林科学技术出版社, 1991. 12 Shen Z Q. Polymer Bulletin, 2005(4), 1 (in Chinese). 沈之荃. 高分子通报, 2005(4), 1. 13 Shen Z, Chen X, Zhang Y. Macromolecular Chemistry & Physics, 1994, 195(6), 2003. 14 Ren C, Li G, Dong W, et al. Polymer, 2007, 48(9), 2470. 15 Kazuo N, Naoto M, Yasuo N, et al. The Journal of Organic Chemistry, 1993, 58(6), 1483. 16 Li G, Zhang Y. Steroids, 2007, 72(6-7), 569. 17 Tadanobu S, Hiroyuki I, Toyotoshi U, et al. Synthetic Communications, 2009, 39, 3912. 18 Li J Y, Wang X Z, Lu S L, et al. Chemical Technology, 2010, 18(6), 65 (in Chinese). 李金鹰, 王勋章, 陆书来, 等. 化工科技, 2010, 18(6), 65. 19 Yin J, Jin J, Xi P X, et al. In:Abstracts of the 2022 Academic Annual Meeting of the Chinese Society of Rare Earths, Baotou, China, 2022, pp. 395 (in Chinese). 殷杰, 靳晶, 席聘贤, 等. In:中国稀土学会2022学术年会摘要集, 包头, 2022, pp. 395. 20 Wen R. Technology Innovation and Application. 2015(27), 99 (in Chinese). 温茹. 科技创新与应用, 2015(27), 99. 21 Huang X W, Li H W, Wang C F, et al. Rare Metals, 2007, 31(3), 279 (in Chinese). 黄小卫, 李红卫, 王彩凤, 等. 稀有金属, 2007, 31(3), 279. 22 Huang X W, Zhuang W D, Li H W, et al. Rare Metals, 2004, 28(4), 711 (in Chinese). 黄小卫, 庄卫东, 李红卫, 等. 稀有金属, 2004, 28(4), 711. 23 Shen Z Q, Gong Z Y, Zhong C Q, et al. Science Bulletin, 1964(4), 335 (in Chinese). 沈之荃, 龚仲元, 仲崇祺, 等. 科学通报, 1964(4), 335. 24 Shen Z Q, Gong Z Y, Zhong C Q, et al. Acta Polymerica Sinica, 1965, 7(3), 193 (in Chinese). 沈之荃, 龚仲元, 仲崇祺, 等. 高分子通讯, 1965, 7(3), 193. 25 Vougioukas A E, Kagan H B. Tetrahedron Letters, 1987, 28(45), 5513. 26 Lin S B, Li Z Y, Luo G, et al. Chemical Industry and Engineering Progress, 2014, 33(5), 1276 (in Chinese). 林世博, 李喆宇, 罗刚, 等. 化工进展, 2014, 33(5), 1276. 27 Yang Y Q, Qi S H, Wu J T. China Plastics, 2011, 25(6), 87 (in Chinese). 杨永清, 齐暑华, 吴江涛. 中国塑料, 2011, 25(6), 87. 28 Ahn Y, Cohen T. Tetrahedron Letters, 1994, 25(18), 203. 29 Dimitrov V, Bratovanov S, Simova S, et al. Tetrahedron Letters, 1994, 35(36), 6713. 30 Li X, Singh S M, Labrie F. Tetrahedron Letters, 1994, 35(8), 1157. 31 Liu S D, Kuang L, Zhao L S. Rare Earth Information. 2023(8), 30 (in Chinese). 刘思德, 匡露, 赵丽莎. 稀土信息, 2023(8), 30. 32 Zhang X L, Luo L T. Meteorology and Disaster Reduction Research, 2006, 29(4), 47 (in Chinese). 张雪黎, 罗来涛. 气象与减灾研究, 2006, 29(4), 47. 33 Cheng C Y, Ge C Z, Qin C B, et al. Environmental Protection, 2016, 44(6), 53 (in Chinese). 程翠云, 葛察忠, 秦昌波, 等. 环境保护, 2016, 44(6), 53. 34 Luo Z W, Zhang Y W, Lin D E. Guangdong Chemical Industry, 2005(3), 12 (in Chinese). 罗枝伟, 张逸伟, 林东恩. 广东化工, 2005(3), 12. 35 Mase N, Nishi T, Hiyoshi M, et al. Journal of the Chemical Society, Perkin Transactions 1, 2002, 2002(6), 707. 36 Zhang Y X, Wang J M. Chemical Intermediates, 2013, 10(8), 39 (in Chinese). 张永霞, 王景梅. 化工中间体, 2013, 10(8), 39. 37 Li W T, Dou T T, Li X, et al. China Synthetic Rubber Industry, 2021, 44(4), 325 (in Chinese). 李伟天, 窦彤彤, 李旭, 等. 合成橡胶工业, 2021, 44(4), 325. 38 Zhang Y, Zhao H, Du Z, et al. Chemistry of Materials, 2019, 31(10), 3784. 39 Lu Y, Liang G F, Wu L X, et al. Chemical Reagents, 2019, 41(3), 214 (in Chinese). 鲁雅, 梁刚峰, 吴林欣, 等. 化学试剂, 2019, 41(3), 214. 40 Li X Y. Study on the reduction of liquid-terminated carboxyfluoroelastomer by sodium borohydride/rare earth chloride and its curing. Master's Thesis, Dalian Maritime University, China, 2020 (in Chinese). 李雪岩. 硼氢化钠/稀土氯化物还原液体端羧基氟橡胶及其固化研究. 硕士学位论文, 大连海事大学, 2020. 41 Li Y, Wang F, Cao X P. Acta Chimica Sinica, 2003, 61(2), 279 (in Chinese). 李洋, 王峰, 曹小平. 化学学报, 2003, 61(2), 279. 42 Tale R H, Patil K M, Dapurkar S E. Tetrahedron Letter, 2003, 44(16), 3427. 43 Mariappan P, Muniappan T. Journal of Organometallic Chemistry, 2000, 609(1-2), 137. 44 Chang Y F, Liao M Y, Yuan G F. Chemical Journal of Chinese Universities, 2023, 44(10), 253 (in Chinese). 常云飞, 廖明义, 袁高飞. 高等学校化学学报, 2023, 44(10), 253. 45 Chang Y F, Liao M Y, Li X Y. RSC Advances, 2020, 10, 10932. 46 Valade D, Boschet F, Ameduri B. Macromolecules, 2009, 42(20), 7689. 47 Gondi S R, Vogt A P, Sumerlin B S. Macromolecules, 2007, 40(3), 474. 48 Pianca M, Barchiesi E, Esposto G, et al. Journal of Fluorine Chemistry, 1999, 95(1-2), 71. 49 Wormald P, Ameduri B, Harris R K, et al. Polymer, 2008, 49(17), 3629. 50 Souzy R, Ameduri B, Ahsen S V, et al. Journal of Fluorine Chemistry, 2003, 123(1), 85. 51 Bhaskar K J V, Periasamy M. The Journal of Organic Chemistry, 1991, 56(20), 5964. 52 Zhang Y K, Liao S J, Xu Y, et al. Chinese Journal of Catalysis, 1996, 17(6), 8 (in Chinese). 张源魁, 廖世健, 徐筠, 等. 催化学报, 1996, 17(6), 8. 53 Tong Q, Dong Y M, Zhao K F, et al. Chemical Industry and Engineering Progress, 2019, 38(S1), 226 (in Chinese). 童琴, 董亚梅, 赵昆峰, 等. 化工进展, 2019, 38(S1), 226. 54 Zhu X F, Jin G Q, Zhang J L. Scientia Sinica Chimica, 2020, 50(11), 1575 (in Chinese). 朱晓飞, 金国庆, 张俊龙. 中国科学:化学, 2020, 50(11), 1575. 55 Zhu X. Study on the application of ceriumtrichloride as Lewis acid in organic synthesis. Ph.D. Thesis, Nanjing University of Science and Technology, China, 2015 (in Chinese). 朱驯. 三氯化铈作为Lewis酸在有机合成中的应用研究. 博士学位论文, 南京理工大学, 2015. 56 Robert C K. Handbook of specialty elastomers. Taylor & Francis Group, USA, 2008, pp. 133. 57 Maclachlan J D. Polymer-Plastics Technology and Engineering, 1978, 11(1), 41. 58 Yang X Y. Polymer Bulletin, 2014(5), 10 (in Chinese). 杨晓勇. 高分子通报, 2014(5), 10. 59 Abdelhamida M I, Aboelwafa A M, Elhadidya H, et al. International Journal of Polymeric Materials, 2012, 61(7), 505. 60 Jin L J, Fang Q H, Zhang Q, et al. Journal of Shenyang University of Chemical Technology, 2012, 26(1), 63 (in Chinese). 金丽军, 方庆红, 张强, 等. 沈阳化工大学学报, 2012, 26(1), 63.