Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22040407-9    https://doi.org/10.11896/cldb.22040407
  金属与金属基复合材料 |
无取向硅钢中微细夹杂物控制研究进展
王海军1, 牛宇豪1, 凌海涛1,*, 乔家龙2, 何飞1, 仇圣桃1,2
1 安徽工业大学冶金工程学院,安徽 马鞍山 243032
2 钢铁研究总院有限公司,北京 100083
Research Progress on the Control of Micro-inclusions in Non-oriented Silicon Steel
WANG Haijun1, NIU Yuhao1, LING Haitao1, *, QIAO Jialong2, HE Fei1, QIU Shengtao1,2
1 School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, Anhui, China
2 Central Iron and Steel Research Institute Co., Ltd., Beijing 100083, China
下载:  全 文 ( PDF ) ( 11787KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着家电行业变频技术的实施和推广、新能源汽车产业的兴起和电机节能及高效化发展,市场对无取向硅钢的需求持续大幅上升,但同时对无取向硅钢低铁损、高磁感的磁性能要求愈加苛刻。研究表明,钢中小于1 μm的微细夹杂物(如MnS、AlN、Al2O3、Cu2S)对其磁性能的劣化最为严重,因此,如何控制无取向硅钢中微细夹杂物的类型、总量、尺寸分布等备受关注。本文归纳总结了研究者对影响磁性能的微细夹杂物尺寸分布界定,从控制机理上分析了钙、稀土变质夹杂物的根本原理,综述了国内外相关生产企业、科研院所微细夹杂物控制工艺技术进展,并在此基础上,结合笔者所在团队科研成果指出了当前无取向硅钢微细夹杂物控制存在的不足以及未来发展趋势,并提出了稀土变质微细夹杂物未解决的关键科学问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王海军
牛宇豪
凌海涛
乔家龙
何飞
仇圣桃
关键词:  无取向硅钢  微细夹杂物  磁性能  变质    
Abstract: With the implementation and promotion of frequency conversion technology in the household electrical appliance industry, the rise of new energy automobile industry and the development of motor energy saving and high efficiency, the market demand for non-oriented silicon steel continues to rise significantly. Furthermore, the requirements for the magnetic properties of non-oriented silicon steel with low iron loss and high magnetic induction are more stringent. Studies have shown that the micro inclusions (such as MnS, AlN, Al2O3, Cu2S) in the steel less than 1 μm have the most serious deterioration of the magnetic properties. So, how to control the type, total amount and size distribution of micro inclusions in non-oriented silicon steel has attracted much attention. In this paper, the definition of the size distribution of micro inclusions that affect the magnetic properties by different researchers is summarized. And the fundamental principles of calcium and rare earth of metamorphic inclusions are analyzed from the control mechanism, the progress of micro inclusion control technology in relevant domestic and foreign production enterprises and scientific research institutes is reviewed. On this basis, combined with the scientific research achievements of the team, the author points out the shortcomings of the current non oriented silicon steel micro-inclusions control and the future development trend, and also the key scientific problems that have not been solved in rare earth modification of micro-inclusions are put forward.
Key words:  non-oriented silicon steel    micro inclusions    magnetic property    modification
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TG142.77  
基金资助: 国家自然科学基金(51804003;52274312);安徽省自然科学基金(2008085QE225);安徽省教育厅科学研究重点项目(2022AH050291)
通讯作者:  *程从前,大连理工大学材料科学与工程学院副教授,博士研究生导师。2005年和2010年分别于大连理工大学获得工学学士学位和博士学位。辽宁省化工学会腐蚀与防护专业委员会委员,中国腐蚀与防护学会青年工作委员会委员。发表学术论文60余篇,授权发明专利7项,其中显色检测技术被第三方机构评价为国际先进,被纳入国家能源局核电行业标准NB/T 25079,出版学术专著1部。目前主要从事不锈钢表面钝化及完整性评价、高温氧化/腐蚀机理、车身轻量化材料腐蚀与可靠性等研究。lhtustb@163.com   
作者简介:  赵晓燕,大连理工大学材料科学与工程学院博士研究生,主要从事不锈钢钝化膜完整性显色检测及耐蚀性的研究。
引用本文:    
王海军, 牛宇豪, 凌海涛, 乔家龙, 何飞, 仇圣桃. 无取向硅钢中微细夹杂物控制研究进展[J]. 材料导报, 2024, 38(3): 22040407-9.
WANG Haijun, NIU Yuhao, LING Haitao, QIAO Jialong, HE Fei, QIU Shengtao. Research Progress on the Control of Micro-inclusions in Non-oriented Silicon Steel. Materials Reports, 2024, 38(3): 22040407-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040407  或          http://www.mater-rep.com/CN/Y2024/V38/I3/22040407
1 He Z Z, Zhao Y, Luo H W. Electrical steel, Metallurgical Industry Press, China, 2012(in Chinese).
何忠治, 赵宇, 罗海文. 电工钢, 冶金工业出版社, 2012.
2 Kubota T. Advances in Materials and Processes, 2003, 16(3), 626.
3 Zhang F, Zhu C Y, Miao L D, et al. Metallurgical Analysis, 2012, 32(7), 12(in Chinese).
张峰, 朱诚意, 缪乐德, 等. 冶金分析, 2012, 32(7), 12.
4 Yue C X, Jiang Y, Ni W F, et al. Electrical Steel, 2021, 3(5), 37(in Chinese).
岳重祥, 江毅, 倪卫锋, 等. 电工钢, 2021, 3(5), 37.
5 Lyu X J, Zhang F, Wang B, et al. Special Steel, 2012, 33(4), 22(in Chinese).
吕学钧, 张峰, 王波, 等. 特殊钢, 2012, 33(4), 22.
6 Jenkins K, Lindenmo M. Journal of Magnetism and Magnetic Materials, 2008, 320(20), 2423.
7 Yu C L, Liu J, Fu B, et al. Journal of Functional Materials, 2021, 52(7), 7072(in Chinese).
余春雷, 刘静, 付兵, 等. 功能材料, 2021, 52(7), 7072.
8 Fan L F, Xu X Y, Yue E B. Wide and Heavy Plate, 2007(4), 21(in Chinese).
樊立峰, 许学勇, 岳尔斌. 宽厚板, 2007(4), 21.
9 Bóc I, Cziráki Á, Gróf T, et al. Journal of Magnetism and Magnetic Materials, 1990, 83(1), 381.
10 Guo Y Y, Cai K K. In:2004 National Conference on Physical chemistry of Metallurgy. Zhengzhou, 2004, pp.508(in Chinese).
郭艳永, 蔡开科. 2004年全国冶金物理化学学术会议专辑. 郑州, 2004, pp.508.
11 Zhang F, Li G Q, Miao L D, et al. Journal of Iron and Steel Research, 2012, 24(7), 40(in Chinese).
张峰, 李光强, 缪乐德, 等. 钢铁研究学报, 2012, 24(7), 40.
12 Wang B M, Zhao Z Y, Chen L F, et al. Metallurgical Analysis, 2014, 34(10), 1(in Chinese).
王宝明, 赵志毅, 陈凌峰, 等. 冶金分析, 2014, 34(10), 1.
13 Chen L F, Zhao Z Y. Special Steel, 2015, 36(4), 55(in Chinese).
陈凌峰, 赵志毅. 特殊钢, 2015, 36(4), 55.
14 Li F J. Effect of nano-scale sulfides on the microstructure of non-oriented silicon steel and their control technique. Ph. D. Thesis, Shanghai University, China, 2018(in Chinese).
李方杰. 纳米级硫化物对无取向硅钢组织的影响及其控制技术研究. 博士学位论文, 上海大学, 2018.
15 Cheng L, Hu Z Y, Pang W G, et al. Continuous Casting, 2019, 44(1), 44(in Chinese).
程林, 胡志远, 庞炜光, 等. 连铸, 2019, 44(1), 44.
16 Kong W, Chen Y F, Cang D Q. Metallurgical Research & Technology, 2019, 116(2), 207.
17 Qiao J L, Guo F H, Hu J W, et al. Metals, 2020, 10(10), 1301.
18 Wang L M, Tan Q Y, Li N, et al. Journal of Rare Earths, 2014, 32(5), 513(in Chinese).
王龙妹, 谭清元, 李娜, 等. 中国稀土学报, 2014, 32(5), 513.
19 Toribio J, Ayaso F J, González B. Metals-Open Access Metallurgy Journal, 2021, 11(6), 962.
20 Zhang F, Miao L D, Wang C Q, et al. Electrical Engineering Materials, 2014(5), 29(in Chinese).
张峰, 缪乐德, 王成全, 等. 电工材料, 2014(5), 29.
21 Wu Y. Characteration of inclusion/precipitate and the effect of sulfide on the microstructure of the high grade non-oriented silicon steel. Master's Thesis, Shanghai University, China, 2017(in Chinese).
吴媛. 高牌号无取向硅钢中夹杂物/析出物的表征及硫化物对组织影响的研究. 硕士学位论文, 上海大学, 2017.
22 Li Z P, Cai J, Ma L, et al. Chinese Rare Earths, 2015, 36(6), 96(in Chinese).
李培忠, 蔡洁, 马良, 等. 稀土, 2015, 36(6), 96.
23 Zhu C Y, Huang L Y, Luo X Y, et al. Journal of Iron and Steel Research, 2020, 32(2), 117(in Chinese).
朱诚意, 黄罗翼, 罗小燕, 等. 钢铁研究学报, 2020, 32(2), 117.
24 Zhao Y, Sun Y H, Yin X, et al. Iron Steel Vanadium Titanium, 2014, 35(4), 89(in Chinese).
赵勇, 孙彦辉, 殷雪, 等. 钢铁钒钛, 2014, 35(4), 89.
25 Jiang Y L. Research on the evolution mechanism of inclusions in calcium treated steels and the optimization of Ca-treatment process. Master's Thesis, Wuhan University of Science and Technology, China, 2016(in Chinese).
姜玉龙. 钙处理钢中夹杂物的演化机制及工艺优化研究. 硕士学位论文, 武汉科技大学, 2016.
26 Zhang F, Wang B, Chen X, et al. Special Steel, 2011, 32(1), 44(in Chinese).
张峰, 王波, 陈晓, 等. 特殊钢, 2011, 32(1), 44.
27 Zhang F, Ma C S, Wang B, et al. In:The 8th (2011) China Steel Annual Conference. Beijing, 2011, pp.1333(in Chinese).
张峰, 马长松, 王波, 等. 第八届(2011)中国钢铁年会论文集. 北京, 2011, pp.1333.
28 Hou C K, Liao C C. ISIJ International, 2008, 48(4), 531.
29 Shi C J, Ren H P, Jin Z L, et al. Heat Treatment of Metals, 2016, 41(1), 135(in Chinese).
师彩娟, 任慧平, 金自力, 等. 金属热处理, 2016, 41(1), 135.
30 Li N, Xiang L, Qiu S T, et al. Transactions of Materials and Heat Treatment, 2016, 37(6), 89(in Chinese).
李娜, 项利, 仇圣桃. 材料热处理学报, 2016, 37(6), 89.
31 Li N, Lu Q Y, Wang Y Q, et al. Journal of Iron and Steel Research, 2017, 29(7), 570(in Chinese).
李娜, 陆勤阳, 王永强, 等. 钢铁研究学报, 2017, 29(7), 570.
32 Guo Y Y, Cai K K, Luo Z H, et al. Chinese Journal of Engineering, 2005(4), 427(in Chinese).
郭艳永, 蔡开科, 骆忠汉, 等. 北京科技大学学报, 2005(4), 427.
33 Zong Z Y, Zhang F. Iron Steel Vanadium Titanium, 2013, 34(1), 58(in Chinese).
宗震宇, 张峰. 钢铁钒钛, 2013, 34(1), 58.
34 Zhang L F, Li F, Fang W. Steelmaking, 2016, 32(2), 1(in Chinese).
张立峰, 李菲, 方文. 炼钢, 2016, 32(2), 1.
35 Yang W, Zhang L F, Wang X H, et al. ISIJ International, 2013, 53(8), 1401.
36 Li P Z, Ma L, Ma G M, et al. Chinese Rare Earths, 2016, 37(2), 81(in Chinese).
李培忠, 马良, 马国明, 等. 稀土, 2016, 37(2), 81.
37 Zhao H B, Qin J, Zhang Y H, et al. Electrical Steel, 2021, 3(4), 23(in Chinese).
赵海斌, 秦镜, 张迎晖, 等. 电工钢, 2021, 3(4), 23.
38 Zhou L, Dong M Y, Jin Z L, et al. Heat Treatment of Metals, 2017, 42(7), 6(in Chinese).
周莉, 董梦瑶, 金自力, 等. 金属热处理, 2017, 42(7), 6.
39 Chi X H, Li K W. Continuous Casting, 2016, 41(1), 14(in Chinese).
赤小浩, 李康伟. 连铸, 2016, 41(1), 14.
40 Qiao J L, Guo F H, Fu B, et al. Materials Reports, 2021, 35(20), 20106(in Chinese).
乔家龙, 郭飞虎, 付兵, 等. 材料导报, 2021, 35(20), 20106.
41 Qiao J L, Guo F H, Hu J W, et al. Transactions of Materials and Heat Treatment, 2021, 42(1), 110(in Chinese).
乔家龙, 郭飞虎, 胡金文, 等. 材料热处理学报, 2021, 42(1), 110.
42 Kurosaki Y, Kubota T, Miyazaki M. Japan Patent, JP260980, 2008.
43 Wataru Ohashi M M, Yousuke K, Takeshi K. United States Patent, US7608154, 2009.
44 Masafumi M W O, Yousuke K, Takeshi K, et al. United States Patent, US7662242B2, 2010.
45 Akifumi H, Akitoshi M, Yoshihiko O, et al. Canadian Patent Application, CA3111121A1, 2020.
46 Fujimura H, Ichie T, Natori Y, et al. United States Patent, US11124854B2, 2021.
47 Higuchi Y, Numata M, Fukagawa S, et al. Tetsu-to-Hagane, 1996, 82(8), 671.
48 Takashima M, Morito N, Honda A, et al. IEEE Transactions on Magne-tics, 1999, 35(1), 557.
49 Nakayama T, Honjou N. Journal of Magnetism and Magnetic Materials, 2000, 213(1), 87.
50 Nakayama T, Honjou N, Minaga T, et al. Journal of Magnetism and Magnetic Materials, 2001, 234(1), 55.
51 Hasegawa H, Nakajima K, Mizoguchi S. Tetsu-to-Hagane, 2001, 87(11), 700.
52 Cheng L, Pang W G, Liu Z T, et al. Metal Materials and Metallurgy Engineering, 2019, 47(1), 43(in Chinese).
程林, 庞伟光, 刘珍童, 等. 金属材料与冶金工程, 2019, 47(1), 43.
53 Zhou J L, Ye P, Cheng D F. Shanghai Metals, 2016, 38(6), 27(in Chinese).
周家林, 叶鹏, 程迪夫. 上海金属, 2016, 38(6), 27.
54 Chu S Y, Gan Y, Qiu S T, et al. China Metallurgy, 2022, 32(5), 1(in Chinese).
褚绍阳, 干勇, 仇圣桃, 等. 中国冶金, 2022, 32(5), 1.
55 Wang Q, Zhang W K, Lin Y, et al. Hot Working Technology, 2014, 43(20), 44(in Chinese).
王荃, 张文康, 林媛, 等. 热加工工艺, 2014, 43(20), 44.
56 Chu S J, Qu B, Dai Y Y, et al. Special Steel, 1998(1), 7(in Chinese).
储双杰, 瞿标, 戴元远, 等. 特殊钢, 1998(1), 7.
57 Xia Z S. Shanghai Metals, 2003(4), 20(in Chinese).
夏兆所. 上海金属, 2003(4), 20.
58 Wan Y, Chen W Q, Wu S J. Special Steel, 2013, 34(5), 64(in Chinese).
万勇, 陈伟庆, 吴绍杰. 特殊钢, 2013, 34(5), 64.
[1] 叶登建, 代波. 放电等离子烧结Bi、Ce掺杂钇铁石榴石陶瓷的微观结构与磁性能[J]. 材料导报, 2024, 38(4): 22070054-5.
[2] 何承绪, 马光, 毛航银, 祝志祥, 韩钰, 高洁, 张一航, 胡卓超. 耐热型取向硅钢涂层特性与磁性能[J]. 材料导报, 2024, 38(1): 22030301-5.
[3] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[4] 杨亚苹, 李艳辉, 张伟. 脱合金化法制备纳米多孔铂合金的研究进展[J]. 材料导报, 2023, 37(3): 21020061-7.
[5] 张华, 李梦冉, 徐澎鹏, 李晶晶, 张学斌, 刘伟, 汪金芝, 苏海林. 二级颗粒粒径对颗粒级配软磁粉芯磁性能的影响[J]. 材料导报, 2023, 37(18): 22020065-5.
[6] 周晶晶, 周军, 吴雷, 杨茸茸, 宋永辉, 张秋利. 生物质供氢体协助低变质煤加氢热解提质的研究进展[J]. 材料导报, 2022, 36(9): 20070237-8.
[7] 郑皓天, 王子龙, 李翔. 基于纳米晶结构的非晶合金成分设计[J]. 材料导报, 2022, 36(7): 20090031-7.
[8] 张光睿, 姚特, 龚沛, 乔禹, 王婷婷, 梁雨萍, 郝宏波. (Fe81.5Co1.5Ga17)100-xTbx合金结构及其磁性能[J]. 材料导报, 2022, 36(5): 20120138-5.
[9] 潘琳茹, 李雪莲, 王丽, 孙禄涛, 魏彬彬, 郭春生. 覆铜热处理对Fe80Si9B11非晶铁芯软磁性能的影响:一种改善非晶铁芯温度分布的方法[J]. 材料导报, 2022, 36(3): 20090082-4.
[10] 康靓, 王堃, 敬学锐, 王煜烨, 王世伟, 孙鑫, 肖旅, 周海涛. 镁基材料中Mg2Si相调控技术的研究进展[J]. 材料导报, 2022, 36(22): 22030308-7.
[11] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[12] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[13] 刘元军, 王翊, 侯硕, 武翔, 赵晓明. 功能粒子种类对涂层涤棉织物电磁性能的影响[J]. 材料导报, 2021, 35(24): 24177-24181.
[14] 朱诚意, 鲍远凯, 汪勇, 马江华, 李光强. 新能源汽车驱动电机用无取向硅钢应用现状和性能调控研究进展[J]. 材料导报, 2021, 35(23): 23089-23096.
[15] 杨浩, 王成, 肖小波, 王晨, 陈俊锋, 汪炳叔, 张维林, 崔熙贵. 添加硼酸和钨酸铵对取向硅钢无铬绝缘涂层的影响[J]. 材料导报, 2021, 35(22): 22141-22145.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed