Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 22030308-7    https://doi.org/10.11896/cldb.22030308
  宇航材料 |
镁基材料中Mg2Si相调控技术的研究进展
康靓1,2, 王堃1,3, 敬学锐4, 王煜烨1,2, 王世伟1,2, 孙鑫1,2, 肖旅1,2,3, 周海涛1,2,*
1 上海航天精密机械研究所,上海 201600
2 上海金属材料近净成形工程技术研究中心,上海 201600
3 上海交通大学材料科学与工程学院,上海 200240
4 重庆大学材料科学与工程学院,重庆 400045
Research Progress of Mg2Si Phase Regulation in Magnesium-based Materials
KANG Jing1,2, WANG Kun1,3, JING Xuerui4, WANG Yuye1,2, WANG Shiwei1,2, SUN Xin1,2, XIAO Lyu1,2,3, ZHOU Haitao1,2,*
1 Shanghai Spaceflight Precision Machinery Institute,Shanghai 201600, China
2 Shanghai Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, Shanghai 201600, China
3 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
4 School of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
下载:  全 文 ( PDF ) ( 5582KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Mg2Si相增强镁基材料具备低密度、高强度、高热稳定性、高耐磨性等优点,在航空航天、轨道交通等领域具备极大应用前景。研究表明,常规制备条件下Mg2Si相组织粗大,有尖锐棱角,在受力过程中容易成为裂纹源而降低镁基材料的强韧性,因此需调控Mg2Si相尺寸及分布。近年来,多种Mg2Si相调控技术不断应用于镁基材料体系。在传统铸造方面主要通过变质处理或熔体处理调控Mg2Si相形貌及尺寸,调控后初生Mg2Si相由粗大枝晶状、鱼骨状转变为多面体状或颗粒状,共晶Mg2Si相则由汉字状转变为细纤维状或短棒状,相尺寸也从数百微米被细化到数十微米。调控后的Mg2Si相分布更加均匀,材料的强韧性也得到改善。此外,还可通过大塑性变形、快速凝固、粉末冶金等先进技术调控得到纳米级均匀弥散分布的Mg2Si相增强镁基材料,材料性能也得到进一步提升。本文综述了Mg2Si相形貌及分布、常规铸造过程的变质处理和熔体处理以及新兴的先进调控技术对Mg2Si相增强镁基材料组织与性能影响的研究现状,还分析了不同调控技术的优势与不足,并对Mg2Si相增强镁基材料未来的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
康靓
王堃
敬学锐
王煜烨
王世伟
孙鑫
肖旅
周海涛
关键词:  Mg2Si相  镁基材料  调控  变质处理  熔体处理  先进调控技术    
Abstract: Magnesium-based materials with in-situ Mg2Si reinforced phase have attracted much attention due to their low density, high strength, superior thermal stability and excellent wear resistance, which have widely used in aerospace, rail transportation and other fields. Conventional Mg2Si phase behaves quite coarse with sharp edges and corners, and it prefers to become the crack source during the processing, which significantly damages its strength and toughness. Therefore, it is highly required to regulate the size and distribution of the Mg2Si phase to improve the mechanical properties. Recently, various Mg2Si phase regulation technologies have been developed. In traditional casting, the morphology and size of Mg2Si phase are mainly controlled by modification treatment or melt treatment. The morphology of the primary Mg2Si phases was changed from the coarse dendrite and fishbone shape to polyhedral or granular shape through the regulation treatment, and that of the eutectic Mg2Si phases was transformed from character shape to fine fibers or short rods. Simultaneously, the phase was refined from hundreds of micrometers to tens of micrometers. The distribution of the regulated Mg2Si phases became more uniform, and the strength and toughness of the material were also improved. Additionally, nanoscale Mg2Si phase reinforced magnesium-based materials with uniform dispersion and distribution can be obtained through the advanced technologies, such as sever plastic deformation, rapid solidification and powder metallurgy, with the mechanical properties significantly improved. This paper reviews the researches about the Mg2Si phase morphology and distribution, modification treatment and melt treatment in conventional cas-ting process, and summarizes the influence of the advanced regulation technologies on the microstructure and properties of Mg2Si phase reinforced magnesium-based materials. The advantages and disadvantages of different regulation technologies are also analyzed. And the future development of Mg2Si phase reinforced magnesium-based materials is prospected.
Key words:  Mg2Si phase    magnesium-based material    regulation    modification treatment    melt treatment    advanced regulation technology
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  TG146.2+2  
基金资助: 国家自然科学基金(U2037601)
通讯作者:  * htzzz0313@163.com   
作者简介:  康靓,上海航天精密机械研究所助理工程师。2017年6月、2020年6月分别于重庆大学材料科学与工程学院获得工学学士学位和硕士学位,目前主要从事镁基结构材料的工程化应用相关研究。
周海涛,上海航天精密机械研究所高级工程师。2010年于佳木斯大学材料成型及控制工程学士毕业,2013年于佳木斯大学材料加工工程硕士毕业,2017年于哈尔滨工业大学材料加工工程博士毕业,目前主要从事镁合金及镁基复合材料设计、制备及工程应用等方面的研究工作。共发表学术论文20多篇,其中SCI检索12篇,EI检索3篇。共申请专利近30项,其中授权12项。
引用本文:    
康靓, 王堃, 敬学锐, 王煜烨, 王世伟, 孙鑫, 肖旅, 周海涛. 镁基材料中Mg2Si相调控技术的研究进展[J]. 材料导报, 2022, 36(22): 22030308-7.
KANG Jing, WANG Kun, JING Xuerui, WANG Yuye, WANG Shiwei, SUN Xin, XIAO Lyu, ZHOU Haitao. Research Progress of Mg2Si Phase Regulation in Magnesium-based Materials. Materials Reports, 2022, 36(22): 22030308-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030308  或          http://www.mater-rep.com/CN/Y2022/V36/I22/22030308
1 Nie K B, Wua K, Deng K K, et al.Journal of Magnesium and Alloys, 2020, 1(15), 57.
2 Song J F, She J, Chen D L, et al.Journal of Magnesium and Alloys, 2021, 8(1), 1.
3 Guan H T, Xiao H, Ouyang S H, et al.Nanotechnology Reviews, 2022, 10(11), 712.
4 Seth P P, Parkash O, Kumar D.Royal Society of Chemistry, 2020, 10, 37327.
5 Khangholi S N, Javidani M, Maltais A, et al.Journal of Materials Research, 2022, 37(3), 670.
6 Bronfin B, Katsir M, Aghion E.Materials Science and Engineering A, 2001, 302(1), 46.
7 Kumar K K A, Srinivasan A, Pillai U T S, et al.Silicon, DOI: 10.1007/s12633-021-01521-6.
8 Xiao P, Gao Y M, Yang S S, et al.Materials Research Express, 2020, 6(12), 1265f8.
9 Chen X. Study on in-situ particulate reinforced magnesium matrix composite. Ph.D. Thesis, Central South University,China,2005(in Chinese).
陈晓. 原位自生颗粒增强镁基复合材料的研究.博士学位论文, 中南大学, 2005.
10 Cong M Q, Li Z Q, Liu J S, et al.Journal of Alloys and Compounds, 2012, 593, 168.
11 Zhao Y Z, Zhao Y H, Li Q A, et al.Rare Metal Materials and Enginee-ring, 2010, 39(8), 1385.
12 Karakulak E, Kucuker Y B.Journal of Magnesium and Alloys, 2019, 6(4), 384.
13 Sundarraju G, Thankathurai K R, Charman C A, et al.Silicon, 2022, 14, 5145.
14 Guan L, Deng Y, Luo Y, et al.Metals and Materials International, 2021, 27, 3740.
15 Zhang X, Hu J, Ye L, et al.Materials and Design, 2013, 43, 74.
16 Zhang J X, Gao A H, Guo X F, et al.Acta Physica Sinica, 2013, 63(17), 6(in Chinese).
张建新, 高爱华, 郭学锋, 等.物理学报, 2013, 63(17), 6.
17 Tanhaee Z, Mahmudi R.Materials Science and Engineering A, 2016, 673, 148.
18 Shao B C. Influences of Bi, Sb and P modification on microstructure and mechanical properties of in-situ Mg2Si/AZ91D composites. Master's Thesis, Liaoning University of Technology, China, 2016(in Chinese).
邵秉川. 铋、锑、磷变质对原位自生Mg2Si/AZ91D复合材料组织与性能的影响. 硕士学位论文, 辽宁工业大学, 2016.
19 Metayer J, Ye B, Guo W, et al.Transactions of Nonferrous Metals Society of China, 2014, 24(1), 66.
20 Chang C L, Wang Y N, Pei H R, et al.Key Engineering Materials, 2007, 351, 114.
21 Zhang X P, Zhang Z Y, Wang H X, et al.Journal of Materials Research and Technology, 2020, 9(3), 4230.
22 Mirshahi F, Meratian M, Panjepour M.Materials Science and Engineering A, 2011, 528(29), 8319.
23 Chen C Y, Tsao C Y A.Materials Science and Engineering A, 2004, 383(1), 21.
24 Li P B, Yang H, Tan W T, et al.Journal of Materials Science, 2021, 56(11), 6799.
25 Olszowka-myalska A, Myalska H, Wrzesniowski P, et al.Materials, 2021, 14(23), 7114.
26 Mabuchi M, Higashi K.Acta Materialia, 1996, 44(14), 4611.
27 Zhang C F, Fan T X, Gao W, et al.Materials Science and Engineering A, 2009, 508(1), 190.
28 Asano K, Yoneda H.Materials Transactions, 2008, 49(7), 1688.
29 Olszowka-myalska A, Wrzesniowski P, Myalska H, et al.Materials, 2019, 12(18), 3242.
30 Hu J L, Zhang X M, Tang C P, et al.Materials Science and Engineering A, 2013, 571(1), 19.
31 Guan L Q, Deng Y L, Luo A, et al.Materials Science and Engineering A, 2021, 804(10), 140736.
32 Wang J L, Xing S M.Materials Reports, 2018, 32(Z2), 5(in Chinese).
王井玲, 邢书明.材料导报, 2018, 32(Z2), 5.
33 Lotfpour M, Bahmani A, Mirzadeh H, et al.Materials Science and Engineering A, 2021, 820, 141574.
34 Hu B, Zhu W J, Li Z X, et al.Journal of Magnesium and Alloys, 2021, 820, 820.
35 Bian S G. Research on alloying modification mechanisms and corrosion resistance of in-situ synthesized Mg2Si/Mg-Zn-Si matrix composites. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2010(in Chinese).
卞松刚. 原位自生Mg2Si/Mg-Zn-Si复合材料的合金化变质机制及耐蚀性研究. 硕士学位论文, 南京航空航天大学, 2010.
36 Cong M Q. Research on microstructural refinement mechanism and pro-perties of Mg2Sip/Mg-Zn based matrix composites. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics,China,2017(in Chinese).
丛孟启. 原位自生 Mg2Sip/Mg-Zn 复合材料的组织细化机理及性能研究. 博士学位论文, 南京航空航天大学, 2017.
37 Kou S P, Kong Q F, Ma J G, et al.Foundry, 2016, 65(3), 4(in Chinese).
寇首鹏, 孔庆富, 马继刚, 等.铸造, 2016, 65(3), 4.
38 Chen K, Li Z.Journal of Alloys and Compounds, 2014, 592, 196.
39 Dong H, Xiang S, Lyu J, et al.Journal of Materials Engineering and Performance, 2020, 29(6), 3678.
40 Zhang Z Q, Lei Q C, Gui J Z.Journal of Wuhan University of Technology, 2011, 25(5), 820.
41 Chen X R, Yin C Y, Le Q C, et al.International Journal of Metalcas-ting, 2021, 16(1), 474.
42 Deng P, Zheng W W, Deng M Y, et al.Special Casting & Nonferrous Alloys, 2017, 37(1), 3(in Chinese).
邓鹏, 郑旺旺, 邓鸣瑶, 等.特种铸造及有色合金, 2017, 37(1), 3.
43 Geng H R, Wang Q L, Liu P, et al.Materials Transactions, 2014, 21(3), 289.
44 Yu H S, Guo X F, Cui H B.China Foundry, 2021, 19(1), 9.
45 Xiao P, Gao Y M, Mao P, et al.Journal of Alloys and Compounds, 2020, 850, 156877.
46 Jun J H.Materials Transactions, 2012, 53(11), 2064.
47 Zheng N, Wang H Y, Wang W, et al.Journal of Alloys and Compounds, 2008, 459(1), L8.
48 Wang H Y, Jiang Q C, Ma B X, et al.Journal of Alloys and Compounds, 2005, 387(1), 105.
49 Xiao P, Gao Y M, Yang C C, et al.Journal of Alloys and Compounds, 2022, 902, 163859.
50 Liao L H, Zhang X Q, Wang H W, et al.Journal of Alloys and Compounds, 2007, 430(1), 292.
51 Hou J, Li C, Liu X F.Journal of Alloys and Compounds, 2011, 509(3), 735.
52 Kim J J, Kim D H, Shin K S, et al.Scripta Materialia, 1999, 41(3), 333.
53 Lotfpour M, Emamy M, Allameh S H, et al.Procedia Materials Science, 2015, 11, 38.
54 Marjani O, Emamy M, Mirzadeh H.Journal of Materials Engineering and Performance, 2020, 29(11), 7728.
55 Han M D, Li Y H, Li X D, et al.Applied Surface Science, 2020, 503(15), 144331.
56 Shin H C, Son J, Min B K, et al.Journal of Alloys and Compounds, 2019, 792, 59.
57 Liu H, Yao J P, Bai S M, et al.Special Casting & Nonferrous Alloys, 2016, 36(9), 1002(in Chinese).
刘辉,尧军平,柏世梅,等.特种铸造及有色合金,2016,36(9),1002.
58 Wei X L, Lian Z, Zhao H Z, et al.China Foundry, 2015, 12(6), 440.
59 Gu Z H. Modification of Mg2Si in Mg-Si-Zn/Al alloys with P. Master's Thesis, Jilin University, China, 2008(in Chinese).
顾振华. P对Mg-Si-Zn/Al系合金中的Mg2Si的变质. 硕士学位论文, 吉林大学, 2008.
60 Deev V, Prusov E, Ri E, et al.Metals, 2021, 11(9), 1353.
61 Gu Z H, Wang H Y, Zheng N, et al.Journal of Materials Science, 2008, 43(3), 980.
62 Zha M, Wang H Y, Liu B, et al.Transactions of Nonferrous Metals Society of China, 2008, 18(1), s107.
63 Jung J G, Lee S H, Lee J M, et al.Materials Science and Engineering, A, 2016, 669, 187.
64 Wang Z W, Wang H X, Wang W H, et al.Journal of Harbin Engineering University, 2017, 38(5), 5(in Chinese).
王志文, 王红霞,王万华,等.哈尔滨工程大学学报,2017,38(5),5.
65 Moussa M E, Waly M A, El-Sheikh A M.Journal of Alloys and Compounds, 2014, 615, 576.
66 Liu F, Yin J, Shao Q, et al.Materials Reports B: Research Papers, 2019, 33(1), 293(in Chinese).
刘飞, 尹健, 邵琦, 等.材料导报:研究篇, 2019, 33(1), 293.
67 Du J, Iwai K, Li W F, et al.Transactions of Nonferrous Metals Society of China, 2009, 19(5), 1051.
68 Du J, Iwai K.Materials Transactions, 2009, 50(3), 622.
69 Gan W M, Wu K, Zhang M Y, et al.Materials Science and Engineering A, 2009, 516(1), 283.
70 Guo W, Wang Q, Ye B, et al.Journal of Alloys and Compounds, 2013, 552, 409.
71 Raeissi M, Nourbaksh S H.Materials Research Express,2019,6(10),115.
72 Metayer J, Bing Y, Guo W, et al.Transactions of Nonferrous Metals So-ciety of China, 2014, 21(1), 66.
73 Taghiabadi R, Moharami A.Materials Science and Technology, 2021, 37(1), 66.
74 Raeissi M, Nourbaksh S H.Materials Research Express, 2019, 6(10), 1065e7.
75 Shi L, Li Y, Xiao Y C, et al.Journal of Materials Engineering, 2022, 50(1), 1(in Chinese).
石磊, 李阳, 肖亦辰, 等.材料工程, 2022, 50(1), 1.
76 Griffiths R, Garcia D, Song J, et al.Materialia, 2021, 15, 100967.
77 Wu G H, Chen Y S, Ding W J.Acta Metallurgica Sinica, 2018, 54(5), 10(in Chinese).
吴国华, 陈玉狮, 丁文江.金属学报, 2018, 54(5), 10.
78 Han W D, Li K, Hu F, et al.Results in Physics, 2019, 15, 102509.
79 Li Y H, Li K, Dai J, et al.Materials Today Communications, 2021, 27, 102344.
80 Yang H, Zhang Y, Wang J, et al.Journal of Materials Science and Technology, 2021, 91, 215.
81 Ren F Y, Xu L, Li C Y, et al. Powder Metallurgy Technology, 2020, 38(1), 8(in Chinese).
任峰岩, 许磊, 历长云, 等.粉末冶金技术, 2020, 38(1), 8.
82 Umeda J, Kondoh K, Kawakami M, et al.Powder Technology, 2009, 189(3), 399.
83 Sheng S D, Chen D, Chen Z H.Journal of Alloys and Compounds, 2009, 470(1-2), L17.
84 Seth P P, Singh N, Singh M, et al.Journal of Alloys and Compounds, 2020, 821, 153205.
[1] 梁泽芬, 林小军, 纳仁花, 牛玉艳, 王亮. 单层石墨烯电子结构的调控策略和对接的研究进展[J]. 材料导报, 2022, 36(Z1): 22020133-6.
[2] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[3] 惠冰, 李扬, 张炎棣, 杨心怡. 水性环氧乳化沥青固化-破乳速率调控效能及作用机理[J]. 材料导报, 2022, 36(16): 22050008-6.
[4] 郭靖, 孟永强, 孙金峰, 张少飞. 高导热金刚石/铜复合材料的制备与界面调控研究进展[J]. 材料导报, 2022, 36(15): 20090233-7.
[5] 侯磊, 韩学锋, 邢宝林, 曾会会, 王振帅, 郭晖, 张传祥, 谌伦建. 天然矿物为模板制备功能炭材料的研究进展[J]. 材料导报, 2022, 36(12): 20080165-11.
[6] 于佳酩, 王士鹏, 董娅慧, 王雨梦, 李玉, 程倩. 基于磁场-真空协同作用局部调制胆甾型纤维素[J]. 材料导报, 2022, 36(11): 20120091-6.
[7] 李时春, 莫彬, 肖罡, 苏飞. 激光增材制造成形质量表征与调控研究进展[J]. 材料导报, 2022, 36(10): 20100127-9.
[8] 代朝猛, 李彦, 段艳平, 刘曙光, 涂耀仁. 开关表面活性剂调控及增溶机理研究进展[J]. 材料导报, 2021, 35(9): 9218-9222.
[9] 鲁发章, 刘海韬, 黄文质. 8YSZ-Al2O3复合热障涂层研究进展[J]. 材料导报, 2021, 35(7): 7042-7047.
[10] 田根, 王文宇, 常青, 任智强, 王晓明, 朱胜. 电弧增材制造技术研究现状及展望[J]. 材料导报, 2021, 35(23): 23131-23141.
[11] 余先纯, 孙德林, 计晓琴, 王张恒. 木质素基碳纳米片组装木陶瓷电极的结构调控与电化学储能[J]. 材料导报, 2021, 35(2): 2012-2018.
[12] 夏广辉, 王丁, 李雪豹, 董鹏, 张英杰, 王皓逸. 钠离子电池金属硫化物负极材料的研究进展[J]. 材料导报, 2021, 35(13): 13041-13051.
[13] 朱志强, 王庆平, 闵凡飞, 薛婷婷, 卢春阳, 刘玉新. SiCp/Al复合材料界面调控研究进展[J]. 材料导报, 2021, 35(13): 13139-13147.
[14] 周建峰, 翟鑫华, 张盼盼, 何亚鹏, 董劲, 黄惠, 郭忠诚. 富锂锰基正极材料结构优化及晶面调控研究进展[J]. 材料导报, 2021, 35(11): 11057-11065.
[15] 范燕, 徐昕荣, 石志峰, 刘佳, 李冰, 徐蒙蒙. 生物医用金属材料表面改性的研究进展[J]. 材料导报, 2020, 34(Z2): 327-329.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed