Research Progress of Mg2Si Phase Regulation in Magnesium-based Materials
KANG Jing1,2, WANG Kun1,3, JING Xuerui4, WANG Yuye1,2, WANG Shiwei1,2, SUN Xin1,2, XIAO Lyu1,2,3, ZHOU Haitao1,2,*
1 Shanghai Spaceflight Precision Machinery Institute,Shanghai 201600, China 2 Shanghai Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, Shanghai 201600, China 3 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 4 School of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
Abstract: Magnesium-based materials with in-situ Mg2Si reinforced phase have attracted much attention due to their low density, high strength, superior thermal stability and excellent wear resistance, which have widely used in aerospace, rail transportation and other fields. Conventional Mg2Si phase behaves quite coarse with sharp edges and corners, and it prefers to become the crack source during the processing, which significantly damages its strength and toughness. Therefore, it is highly required to regulate the size and distribution of the Mg2Si phase to improve the mechanical properties. Recently, various Mg2Si phase regulation technologies have been developed. In traditional casting, the morphology and size of Mg2Si phase are mainly controlled by modification treatment or melt treatment. The morphology of the primary Mg2Si phases was changed from the coarse dendrite and fishbone shape to polyhedral or granular shape through the regulation treatment, and that of the eutectic Mg2Si phases was transformed from character shape to fine fibers or short rods. Simultaneously, the phase was refined from hundreds of micrometers to tens of micrometers. The distribution of the regulated Mg2Si phases became more uniform, and the strength and toughness of the material were also improved. Additionally, nanoscale Mg2Si phase reinforced magnesium-based materials with uniform dispersion and distribution can be obtained through the advanced technologies, such as sever plastic deformation, rapid solidification and powder metallurgy, with the mechanical properties significantly improved. This paper reviews the researches about the Mg2Si phase morphology and distribution, modification treatment and melt treatment in conventional cas-ting process, and summarizes the influence of the advanced regulation technologies on the microstructure and properties of Mg2Si phase reinforced magnesium-based materials. The advantages and disadvantages of different regulation technologies are also analyzed. And the future development of Mg2Si phase reinforced magnesium-based materials is prospected.
1 Nie K B, Wua K, Deng K K, et al.Journal of Magnesium and Alloys, 2020, 1(15), 57. 2 Song J F, She J, Chen D L, et al.Journal of Magnesium and Alloys, 2021, 8(1), 1. 3 Guan H T, Xiao H, Ouyang S H, et al.Nanotechnology Reviews, 2022, 10(11), 712. 4 Seth P P, Parkash O, Kumar D.Royal Society of Chemistry, 2020, 10, 37327. 5 Khangholi S N, Javidani M, Maltais A, et al.Journal of Materials Research, 2022, 37(3), 670. 6 Bronfin B, Katsir M, Aghion E.Materials Science and Engineering A, 2001, 302(1), 46. 7 Kumar K K A, Srinivasan A, Pillai U T S, et al.Silicon, DOI: 10.1007/s12633-021-01521-6. 8 Xiao P, Gao Y M, Yang S S, et al.Materials Research Express, 2020, 6(12), 1265f8. 9 Chen X. Study on in-situ particulate reinforced magnesium matrix composite. Ph.D. Thesis, Central South University,China,2005(in Chinese). 陈晓. 原位自生颗粒增强镁基复合材料的研究.博士学位论文, 中南大学, 2005. 10 Cong M Q, Li Z Q, Liu J S, et al.Journal of Alloys and Compounds, 2012, 593, 168. 11 Zhao Y Z, Zhao Y H, Li Q A, et al.Rare Metal Materials and Enginee-ring, 2010, 39(8), 1385. 12 Karakulak E, Kucuker Y B.Journal of Magnesium and Alloys, 2019, 6(4), 384. 13 Sundarraju G, Thankathurai K R, Charman C A, et al.Silicon, 2022, 14, 5145. 14 Guan L, Deng Y, Luo Y, et al.Metals and Materials International, 2021, 27, 3740. 15 Zhang X, Hu J, Ye L, et al.Materials and Design, 2013, 43, 74. 16 Zhang J X, Gao A H, Guo X F, et al.Acta Physica Sinica, 2013, 63(17), 6(in Chinese). 张建新, 高爱华, 郭学锋, 等.物理学报, 2013, 63(17), 6. 17 Tanhaee Z, Mahmudi R.Materials Science and Engineering A, 2016, 673, 148. 18 Shao B C. Influences of Bi, Sb and P modification on microstructure and mechanical properties of in-situ Mg2Si/AZ91D composites. Master's Thesis, Liaoning University of Technology, China, 2016(in Chinese). 邵秉川. 铋、锑、磷变质对原位自生Mg2Si/AZ91D复合材料组织与性能的影响. 硕士学位论文, 辽宁工业大学, 2016. 19 Metayer J, Ye B, Guo W, et al.Transactions of Nonferrous Metals Society of China, 2014, 24(1), 66. 20 Chang C L, Wang Y N, Pei H R, et al.Key Engineering Materials, 2007, 351, 114. 21 Zhang X P, Zhang Z Y, Wang H X, et al.Journal of Materials Research and Technology, 2020, 9(3), 4230. 22 Mirshahi F, Meratian M, Panjepour M.Materials Science and Engineering A, 2011, 528(29), 8319. 23 Chen C Y, Tsao C Y A.Materials Science and Engineering A, 2004, 383(1), 21. 24 Li P B, Yang H, Tan W T, et al.Journal of Materials Science, 2021, 56(11), 6799. 25 Olszowka-myalska A, Myalska H, Wrzesniowski P, et al.Materials, 2021, 14(23), 7114. 26 Mabuchi M, Higashi K.Acta Materialia, 1996, 44(14), 4611. 27 Zhang C F, Fan T X, Gao W, et al.Materials Science and Engineering A, 2009, 508(1), 190. 28 Asano K, Yoneda H.Materials Transactions, 2008, 49(7), 1688. 29 Olszowka-myalska A, Wrzesniowski P, Myalska H, et al.Materials, 2019, 12(18), 3242. 30 Hu J L, Zhang X M, Tang C P, et al.Materials Science and Engineering A, 2013, 571(1), 19. 31 Guan L Q, Deng Y L, Luo A, et al.Materials Science and Engineering A, 2021, 804(10), 140736. 32 Wang J L, Xing S M.Materials Reports, 2018, 32(Z2), 5(in Chinese). 王井玲, 邢书明.材料导报, 2018, 32(Z2), 5. 33 Lotfpour M, Bahmani A, Mirzadeh H, et al.Materials Science and Engineering A, 2021, 820, 141574. 34 Hu B, Zhu W J, Li Z X, et al.Journal of Magnesium and Alloys, 2021, 820, 820. 35 Bian S G. Research on alloying modification mechanisms and corrosion resistance of in-situ synthesized Mg2Si/Mg-Zn-Si matrix composites. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2010(in Chinese). 卞松刚. 原位自生Mg2Si/Mg-Zn-Si复合材料的合金化变质机制及耐蚀性研究. 硕士学位论文, 南京航空航天大学, 2010. 36 Cong M Q. Research on microstructural refinement mechanism and pro-perties of Mg2Sip/Mg-Zn based matrix composites. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics,China,2017(in Chinese). 丛孟启. 原位自生 Mg2Sip/Mg-Zn 复合材料的组织细化机理及性能研究. 博士学位论文, 南京航空航天大学, 2017. 37 Kou S P, Kong Q F, Ma J G, et al.Foundry, 2016, 65(3), 4(in Chinese). 寇首鹏, 孔庆富, 马继刚, 等.铸造, 2016, 65(3), 4. 38 Chen K, Li Z.Journal of Alloys and Compounds, 2014, 592, 196. 39 Dong H, Xiang S, Lyu J, et al.Journal of Materials Engineering and Performance, 2020, 29(6), 3678. 40 Zhang Z Q, Lei Q C, Gui J Z.Journal of Wuhan University of Technology, 2011, 25(5), 820. 41 Chen X R, Yin C Y, Le Q C, et al.International Journal of Metalcas-ting, 2021, 16(1), 474. 42 Deng P, Zheng W W, Deng M Y, et al.Special Casting & Nonferrous Alloys, 2017, 37(1), 3(in Chinese). 邓鹏, 郑旺旺, 邓鸣瑶, 等.特种铸造及有色合金, 2017, 37(1), 3. 43 Geng H R, Wang Q L, Liu P, et al.Materials Transactions, 2014, 21(3), 289. 44 Yu H S, Guo X F, Cui H B.China Foundry, 2021, 19(1), 9. 45 Xiao P, Gao Y M, Mao P, et al.Journal of Alloys and Compounds, 2020, 850, 156877. 46 Jun J H.Materials Transactions, 2012, 53(11), 2064. 47 Zheng N, Wang H Y, Wang W, et al.Journal of Alloys and Compounds, 2008, 459(1), L8. 48 Wang H Y, Jiang Q C, Ma B X, et al.Journal of Alloys and Compounds, 2005, 387(1), 105. 49 Xiao P, Gao Y M, Yang C C, et al.Journal of Alloys and Compounds, 2022, 902, 163859. 50 Liao L H, Zhang X Q, Wang H W, et al.Journal of Alloys and Compounds, 2007, 430(1), 292. 51 Hou J, Li C, Liu X F.Journal of Alloys and Compounds, 2011, 509(3), 735. 52 Kim J J, Kim D H, Shin K S, et al.Scripta Materialia, 1999, 41(3), 333. 53 Lotfpour M, Emamy M, Allameh S H, et al.Procedia Materials Science, 2015, 11, 38. 54 Marjani O, Emamy M, Mirzadeh H.Journal of Materials Engineering and Performance, 2020, 29(11), 7728. 55 Han M D, Li Y H, Li X D, et al.Applied Surface Science, 2020, 503(15), 144331. 56 Shin H C, Son J, Min B K, et al.Journal of Alloys and Compounds, 2019, 792, 59. 57 Liu H, Yao J P, Bai S M, et al.Special Casting & Nonferrous Alloys, 2016, 36(9), 1002(in Chinese). 刘辉,尧军平,柏世梅,等.特种铸造及有色合金,2016,36(9),1002. 58 Wei X L, Lian Z, Zhao H Z, et al.China Foundry, 2015, 12(6), 440. 59 Gu Z H. Modification of Mg2Si in Mg-Si-Zn/Al alloys with P. Master's Thesis, Jilin University, China, 2008(in Chinese). 顾振华. P对Mg-Si-Zn/Al系合金中的Mg2Si的变质. 硕士学位论文, 吉林大学, 2008. 60 Deev V, Prusov E, Ri E, et al.Metals, 2021, 11(9), 1353. 61 Gu Z H, Wang H Y, Zheng N, et al.Journal of Materials Science, 2008, 43(3), 980. 62 Zha M, Wang H Y, Liu B, et al.Transactions of Nonferrous Metals Society of China, 2008, 18(1), s107. 63 Jung J G, Lee S H, Lee J M, et al.Materials Science and Engineering, A, 2016, 669, 187. 64 Wang Z W, Wang H X, Wang W H, et al.Journal of Harbin Engineering University, 2017, 38(5), 5(in Chinese). 王志文, 王红霞,王万华,等.哈尔滨工程大学学报,2017,38(5),5. 65 Moussa M E, Waly M A, El-Sheikh A M.Journal of Alloys and Compounds, 2014, 615, 576. 66 Liu F, Yin J, Shao Q, et al.Materials Reports B: Research Papers, 2019, 33(1), 293(in Chinese). 刘飞, 尹健, 邵琦, 等.材料导报:研究篇, 2019, 33(1), 293. 67 Du J, Iwai K, Li W F, et al.Transactions of Nonferrous Metals Society of China, 2009, 19(5), 1051. 68 Du J, Iwai K.Materials Transactions, 2009, 50(3), 622. 69 Gan W M, Wu K, Zhang M Y, et al.Materials Science and Engineering A, 2009, 516(1), 283. 70 Guo W, Wang Q, Ye B, et al.Journal of Alloys and Compounds, 2013, 552, 409. 71 Raeissi M, Nourbaksh S H.Materials Research Express,2019,6(10),115. 72 Metayer J, Bing Y, Guo W, et al.Transactions of Nonferrous Metals So-ciety of China, 2014, 21(1), 66. 73 Taghiabadi R, Moharami A.Materials Science and Technology, 2021, 37(1), 66. 74 Raeissi M, Nourbaksh S H.Materials Research Express, 2019, 6(10), 1065e7. 75 Shi L, Li Y, Xiao Y C, et al.Journal of Materials Engineering, 2022, 50(1), 1(in Chinese). 石磊, 李阳, 肖亦辰, 等.材料工程, 2022, 50(1), 1. 76 Griffiths R, Garcia D, Song J, et al.Materialia, 2021, 15, 100967. 77 Wu G H, Chen Y S, Ding W J.Acta Metallurgica Sinica, 2018, 54(5), 10(in Chinese). 吴国华, 陈玉狮, 丁文江.金属学报, 2018, 54(5), 10. 78 Han W D, Li K, Hu F, et al.Results in Physics, 2019, 15, 102509. 79 Li Y H, Li K, Dai J, et al.Materials Today Communications, 2021, 27, 102344. 80 Yang H, Zhang Y, Wang J, et al.Journal of Materials Science and Technology, 2021, 91, 215. 81 Ren F Y, Xu L, Li C Y, et al. Powder Metallurgy Technology, 2020, 38(1), 8(in Chinese). 任峰岩, 许磊, 历长云, 等.粉末冶金技术, 2020, 38(1), 8. 82 Umeda J, Kondoh K, Kawakami M, et al.Powder Technology, 2009, 189(3), 399. 83 Sheng S D, Chen D, Chen Z H.Journal of Alloys and Compounds, 2009, 470(1-2), L17. 84 Seth P P, Singh N, Singh M, et al.Journal of Alloys and Compounds, 2020, 821, 153205.