Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 60-64    https://doi.org/10.11896/j.issn.1005-023X.2017.022.012
  材料研究 |
Ti35Nb7Zr-xHA生物复合材料的微观组织与性能研究*
单文瑞1,2,张玉勤1,2,何正员1,2,蒋业华1,2
1 昆明理工大学材料科学与工程学院,昆明 650093;
2 金属先进凝固成形及装备技术国家地方联合工程实验室,昆明 650093
Research on Microstructure and Properties of Ti35Nb7Zr-xHA Biocomposites
SHAN Wenrui1,2, ZHANG Yuqin1,2, HE Zhengyuan1,2, JIANG Yehua1,2
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
2 National-local Joint Engineering Laboratory for Advanced Technology of Metal Solidification Forming and Equipment, Kunming 650093
下载:  全 文 ( PDF ) ( 729KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了改善Ti-Nb-Zr合金的生物活性,采用放电等离子烧结(SPS)技术制备了不同羟基磷灰石(HA)含量的Ti35Nb7Zr-xHA(x=0、5、10、20(质量分数,%))生物复合材料,研究了HA含量对复合材料微观组织、力学性能及体外生物活性的影响。结果表明,复合材料主要由β-Ti、α-Ti、HA及陶瓷相(TixPy、CaTiO3、Ti2O、CaO)组成;HA含量增加会导致β-Ti减少而α-Ti和陶瓷相明显增多;与Ti-35Nb-7Zr合金(E:45 GPa,σ:1 736 MPa)相比,HA含量为5%和10%时,复合材料的抗压强度分别为1 662 MPa 和1 593 MPa,弹性模量分别为48 GPa和49 GPa,综合力学性能与Ti-35Nb-7Zr合金接近,展现出良好的力学性能,而过高的HA含量(20%)会导致复合材料弹性模量明显升高(E:55 GPa)、抗压强度急剧下降(σ:958 MPa),复合材料的力学性能降低;体外生物活性实验表明,加入10% HA的复合材料在人工模拟体液(SBF)中浸泡7 d后表面生成了大量的类骨磷灰石层,与Ti-35Nb-7Zr合金相比,其显示出更优异的体外生物活性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
单文瑞
张玉勤
何正员
蒋业华
关键词:  钛基生物复合材料  羟基磷灰石  微观组织  力学性能  体外生物活性    
Abstract: To improve the bioactivity of Ti-Nb-Zr alloy, Ti35Nb7Zr-xHA biocomposites with different hydroxyapatite (HA) contents (x=0,5,10, 20 (mass fraction,%)) were prepared by spark plasma sintering (SPS) technique. The effects of HA contents on microstructure, mechanical properties and in vitro bioactivity of the composites were investigated. The results show that the composites are mainly consisted of β-Ti phase, α-Ti phase, HA and metal-ceramic phases (TixPy,CaTiO3,Ti2O,CaO). With the increase of the HA content, the β-Ti phase decrease, while the α-Ti phase and metal-ceramic phase increase obviously. Compared to Ti-35Nb-7Zr alloy (E:45 GPa,σ:1 736 MPa), the compressive strength and the elastic modulus of Ti35Nb7Zr-xHA composites (x=5, 10) are in range of 1 593—1 662 MPa and 48—49 GPa, respectively, which are close to those of Ti-35Nb-7Zr alloy, and presenting a good mechanical properties. However, the Ti35Nb7Zr-20HA composite has highest elastic modulus (E:55 GPa) and lowest compressive strength (σ:958 MPa) compared with other composites, presenting poor mechanical property. Furthermore, lots of bone-like apatite is deposited on the surface of Ti35Nb7Zr-10HA composite after soaking in SBF for 7 d via in vitro bioactivity experiments, the Ti35Nb7Zr-10HA presents an excellent bioactivity compared with the Ti-35Nb-7Zr alloy.
Key words:  titanium matrix biocomposite    hydroxyapatite    microstructure    mechanical properties    in vitro bioactivity
发布日期:  2018-05-08
ZTFLH:  TB333  
基金资助: *国家自然科学基金(31660262);云南省教育厅科学研究基金(2016ZZX049)
通讯作者:  何正员,男,1983年生,博士,讲师,主要研究方向为生物医用复合材料等E-mail:hzy-810@163.com   
作者简介:  单文瑞:男,1989年生,硕士研究生,研究方向为先进钛合金材料E-mail:489356742@qq.com
引用本文:    
单文瑞,张玉勤,何正员,蒋业华,. Ti35Nb7Zr-xHA生物复合材料的微观组织与性能研究*[J]. 材料导报编辑部, 2017, 31(22): 60-64.
SHAN Wenrui, ZHANG Yuqin, HE Zhengyuan, JIANG Yehua,. Research on Microstructure and Properties of Ti35Nb7Zr-xHA Biocomposites. Materials Reports, 2017, 31(22): 60-64.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.012  或          https://www.mater-rep.com/CN/Y2017/V31/I22/60
1 Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review[J]. Prog Mater Sci, 2009,54(3):397.
2 Chen Q, Thouas G A. Metallic implant biomaterials[J]. Mater Sci Eng R, 2015,87:1.
3 Wan Weifeng, Liu Huiqun, Jiang Yong, et al. Microstructure characterization and property tailoring of a biomedical Ti-19Nb-1.5Mo-4Zr-8Sn alloy[J]. Mater Sci Eng A, 2015,637:130.
4 Chaves J M, Florencio O, et al. Anelastic relaxation associated to phase transformations and interstitial atoms in the Ti-35Nb-7Zr alloy[J]. J Alloys Compd, 2014,616:420.
5 Almeida L H, Grandini C R, Caram R. Anelastic spectroscopy in a Ti alloy used as biomaterial[J]. Mater Sci Eng A, 2009,s521-522(10):59.
6 Long M, Rack H J. Titanium alloys in total joint replacement—A materials science perspective[J]. Biomaterials, 1998,19(19):1621.
7 Taddei E B. Characterization of Ti-35Nb-7Zr-5Ta alloy produced by powder metallurgy[J]. Mater Sci Forum, 2005,498:34.
8 Rack H J, Qazi J I. Titanium alloys for biomedical applications[J]. Mater Sci Eng C, 2006,26(8):1269.
9 Du Weiwei, Zhang Yuqin, Jiang Yehua, et al. Effect of spark plasma sintering temperatures on microstructure and mechanical properties of Ti-35Nb-7Zr-5Ta alloy[J]. Rare Metal Mater Eng, 2014,43(4):955(in Chinese).
杜未未, 张玉勤, 蒋业华, 等. 放电等离子烧结温度对Ti-35Nb-7Zr-5Ta合金显微组织和力学性能的影响[J]. 稀有金属材料与工程, 2014,43(4):955.
10 Ffler R, Fleischer M, Kern D P. An anisotropic dry etch process with fluorine chemistry to create well-defined titanium surfaces for biomedical studies[J]. Microelectron Eng, 2012,97(97):361.
11 Xu Shuhua, Wang Yingjun, Luo Chengping. Progress in research on hap bioactive ceramic coatings[J]. Mater Rev, 2002,16(1):48(in Chinese).
徐淑华, 王迎军, 罗承萍. 生物羟基磷灰石涂层材料的研究进展[J]. 材料导报, 2002,16(1):48.
12 Arifin A, Sulong A B, Muhamad N, et al. Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: A review[J]. Mater Des, 2014,55(6):165.
13 Biemond J E, Eufrásio T S, Hannink G, et al. Assessment of bone ingrowth potential of biomimetic hydroxyapatite and brushite coated porous E-beam structures[J]. J Mater Sci Mater Med, 2011,22(4):917.
14 Ahlhelm M, Gunther P, Scheithauer U, et al. Innovative and novel manufacturing methods of ceramics and metal-ceramic composites for biomedical applications[J]. J Eur Ceram Soc, 2016,36(12):2883.
15 Woo K D, Sang H K, Ji Y K, et al. Fabrication and biomaterial characteristics of HA added Ti-Nb-HA composite fabricated by rapid sintering[J]. J Korean Institute of Metals and Materials, 2012,50(1):86.
16 Woo K D, Park S H, Kim J Y, et al. Microstructure and mechanical properties of Ti-35Nb-7Zr-XCPP siomaterials fabricated by rapid sintering[J]. Korean J Mater Res, 2012,22(3):150.
17 Park S H, Woo K D, Kim S H, et al. Mechanical properties and bio-compatibility of Ti-Nb-Zr-HA biomaterial fabricated by rapid sintering using hemm powders[J]. Korean J Mater Res, 2011,21(7):384.
18 Wu Zeen, Hu Rui, Zhang Tiebang, et al. Effect of oxygen on microstructure and phase transformation of high Nb containing TiAl alloys[J]. Acta Metall Sin, 2013,49(11):1381(in Chinese).
吴泽恩, 胡锐, 张铁邦, 等. 间隙原子O对高Nb-TiAl合金显微组织与相转变的影响[J]. 金属学报, 2013,49(11):1381.
19 Bovand D, Yousefpour M, Rasouli S, et al. Characterization of Ti-HA composite fabricated by mechanical alloying[J]. Mater Des, 2015,65:447.
20 Zhu S, Wang X, Yoshimura M, et al. Synthesis of Ti-based glassy alloy/hydroxyapatite composite by spark plasma sintering[J]. Mater Trans, 2008,49(3):502.
21 Zhu Kangping, Zhu Jianwen, Qu Henglei. Development and application of biomedical Ti alloys abroad[J]. Rare Metal Mater Eng, 2012,41(11):2058(in Chinese).
朱康平, 祝建雯, 曲恒磊. 国外生物医用钛合金的发展现状[J]. 稀有金属材料与工程, 2012,41(11):2058.
22 He Zhengyuan, Zhang Yuqin, Zhou Rong, et al. Microstructure evolution and mechanical properties of Ti-35Nb-7Zr-10CPP biocomposites[J]. Rare Metal Mater Eng, 2016,45(4):1061(in Chinese).
何正员, 张玉勤, 周荣, 等. Ti-35Nb-7Zr-10CPP生物复合材料的微观组织演变与力学性能研究[J]. 稀有金属材料与工程, 2016,45(4):1061.
23 He Zhengyuan, Zhang Lei, Shan Wenrui, et al. Characterizations on mechanical properties and in vitro bioactivity of biomedical Ti-Nb-Zr-CPP composites fabricated by spark plasma sintering[J]. Acta Metall Sin, 2016,11(29):1073.
24 Kokubo T, Kim H M, Kawashita M. Novel bioactive materials with different mechanical properties[J]. Biomaterials, 2003,24(13):2161.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[12] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[13] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[14] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[15] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed