Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (17): 1-5    https://doi.org/10.11896/j.issn.1005-023X.2017.017.001
  材料综述 |
基于纳米压痕技术的本构关系反演分析进展*
王月敏1, 闫相桥1, 李垚1, 王滨生2
1 哈尔滨工业大学复合材料与结构研究所,哈尔滨 150080;
2 黑龙江省质量监督检测研究院,哈尔滨 150001
A Review of Reverse Analysis for Material Constitutive Relation Based on Nanoindentation Technique
WANG Yuemin1, YAN Xiangqiao1, LI Yao1, WANG Binsheng2
1 Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080;
2 The Academy of Quality Supervision and Inspection in Heilongjiang Province, Harbin 150001
下载:  全 文 ( PDF ) ( 1399KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 介绍了应力应变反演分析的几种分析方法,包括Dao-Suresh法、极限分析法以及Zhao-Chen法。针对各种方法的力学理论进行论述,并给出每种方法的优缺点和适用范围。介绍了本构关系反演分析中的唯一性问题,尤其侧重于介绍Liu和Chen的研究工作。对本构关系反演分析的不足进行了阐述,并对发展趋势做出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王月敏
闫相桥
李垚
王滨生
关键词:  纳米压痕测试  本构关系  反演分析  唯一性    
Abstract: Several stress-strain reverse analysis methods are outlined in this article, including Dao-Suresh method, limit analysis-based approach and Zhao-Chen method, with emphases on their mechanical theories. At the same time, the advantages and disadvantages of the methods and the applying scopes are described. Uniqueness for reverse analysis is introduced, especially focusing on the works of Liu and Chen. Moreover, the possible research prospects are overviewed.
Key words:  nanoindentation    constitutive relation    reverse analysis    uniqueness
出版日期:  2017-09-10      发布日期:  2018-05-07
ZTFLH:  TB301  
基金资助: 国家自然科学基金(51572058;91216123)
通讯作者:  李垚:通讯作者,男,1973年生,博士,教授,博士研究生导师,研究方向为功能复合材料设计以及评价一体化等 E-mail:liyao@hit.edu.cn   
作者简介:  王月敏:男,1989年生,博士研究生,研究方向为微纳米薄膜材料的力学测试技术 E-mail:yuemin_wanghit@yahoo.com
引用本文:    
王月敏, 闫相桥, 李垚, 王滨生. 基于纳米压痕技术的本构关系反演分析进展*[J]. 《材料导报》期刊社, 2017, 31(17): 1-5.
WANG Yuemin, YAN Xiangqiao, LI Yao, WANG Binsheng. A Review of Reverse Analysis for Material Constitutive Relation Based on Nanoindentation Technique. Materials Reports, 2017, 31(17): 1-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.017.001  或          https://www.mater-rep.com/CN/Y2017/V31/I17/1
1 Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J Mater Res,1992,7(6):1564.
2 Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology [J]. J Mater Res,2004,19(1):3.
3 Schuh C A. Nanoindentation studies of materials [J]. Mater Today,2006,9(5):32.
4 Dong M L, Jin G, Wang H D, et al. The research status of nanoindentaion methods for measuring residual stresses [J]. Mater Rev:Rev,2014,28(3):107(in Chinese).
董美伶, 金国, 王海斗, 等. 纳米压痕法测量残余应力的研究现状[J]. 材料导报:综述篇,2014,28(3):107.
5 Yu C, Yang R, Feng Y, et al. Relationships between the work recovery ratio of indentation and plastic parameters for instrumented spherical indentation [J]. MRS Commun,2015,5(1):89.
6 Kim M, Marimuthu K P, Lee J H, et al. Spherical indentation method to evaluate material properties of high-strength materials[J]. Int J Mech Sci,2016,106: 117.
7 Ma Z S, Zhou Y C, Long S G, et al. On the intrinsic hardness of a metallic film/substrate system: Indentation size and substrate effects [J]. Int J Plast, 2012,34:1.
8 张泰华. 微/纳米力学测试技术及其应用[M]. 北京:机械工业出版社, 2005.
9 Pöhl F, Huth S, Theisen W. Detection of the indentation-size-effect (ISE) and surface hardening by analysis of the loading curvature C[J]. Int J Solids Struct,2016,84:160.
10 Gao X, Ma Z, Jiang W, et al. Stress-strain relationships of LixSn alloys for lithium ion batteries [J]. J Power Sources,2016,311:21.
11 Chung P C, Glynos E, Green P F. The elastic mechanical response of supported thin polymer films[J]. Langmuir,2014,30(50):15200.
12 Fischer-Cripps A C. Critical review of analysis and interpretation of nanoindentation test data [J]. Surf Coat Technol,2006,200(14):4153.
13 Le M Q. Material characterization by instrumented spherical indentation [J]. Mech Mater,2012,46:42.
14 Tabor D. Indentation hardness: Fifty years on a personal view [J]. Phil Mag A,1996,74(5):1207.
15 Robach J S, Kramer D E, Gerberich W W. Determining yield stress via measurement of nanoindentation plastic zone radii[C]//MRS Online Proceeding Library Archive. Cambridge: Cambridge University Press,1998:133.
16 Bell T J, Field J S, Swain M V. Elastic-plastic characterization of thin films with spherical indentation [J]. Thin Solid Films,1992,220(1-2):289.
17 Chaudhri M M. Subsurface plastic strain distribution around spherical indentations in metals [J]. Phil Mag A, 1996,74(5):1213.
18 Dao M, Chollacoop N, Van Vliet K J, et al. Computational mode-ling of the forward and reverse problems in instrumented sharp indentation [J]. Acta Mater,2001,49(19):3899.
19 Cheng Y T, Cheng C M. Scaling approach to conical indentation in elastic-plastic solids with work hardening [J]. J Appl Phys,1998,84(3):1284.
20 Wang L, Rokhlin S I. Universal scaling functions for continuous stiffness nanoindentation with sharp indenters [J]. Int J Solids Struct,2005,42(13):3807.
21 Chollacoop N, Dao M, Suresh S. Depth-sensing instrumented indentation with dual sharp indenters [J]. Acta Mater,2003,51(13):3713.
22 Bucaille J L, Stauss S, Felder E, et al. Determination of plastic properties of metals by instrumented indentation using different sharp indenters[J]. Acta Mater,2003, 51(6):1663.
23 Antunes J M, Fernandes J V, Menezes L F, et al. A new approach for reverse analyses in depth-sensing indentation using numerical simulation [J]. Acta Mater, 2007,55(1):69.
24 Pham T H, Kim J J, Kim S E. Estimating constitutive equation of structural steel using indentation[J]. Int J Mech Sci,2015,90:151.
25 Kang S K, Kim Y C, Kim K H, et al. Constitutive equations optimized for determining strengths of metallic alloys [J]. Mech Mater,2014,73:51.
26 Pöhl F, Huth S, Theisen W. Indentation of self-similar indenters: An FEM-assisted energy-based analysis [J]. J Mech Phys Solids,2014, 66:32.
27 Hyun H C, Kim M, Lee J H, et al. A dual conical indentation technique based on FEA solutions for property evaluation [J]. Mech Mater,2011,43(6):313.
28 Lee J H, Kim T, Lee H. A study on robust indentation techniques to evaluate elastic-plastic properties of metals [J]. Int J Solids Struct,2010,47(5):647.
29 Le M Q. Material characterization by dual sharp indenters [J]. Int J Solids Struct,2009,46(16):2988.
30 Le M Q. Improved reverse analysis for material characterization with dual sharp indenters [J]. Int J Solids Struct,2011,48(10):1600.
31 Yu C, Feng Y, Yang R, et al. An integrated method to determine elastic-plastic parameters by instrumented spherical indentation [J]. J Mater Res,2014,29(9): 1095.
32 Ogasawara N, Chiba N, Chen X. Representative strain of indentation analysis [J]. J Mater Res,2005,20(8): 2225.
33 Ogasawara N, Chiba N, Chen X. Limit analysis-based approach to determine the material plastic properties with conical indentation [J]. J Mater Res,2006,21(4): 947.
34 Ogasawara N, Chiba N, Chen X. A simple framework of spherical indentation for measuring elastoplastic properties [J]. Mech Mater,2009,41(9):1025.
35 Sneddon I N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile [J]. Int J Eng Sci,1965,3(1):47.
36 Hay J C, Bolshakov A, Pharr G M. A critical examination of the fundamental relations used in the analysis of nanoindentation data [J]. J Mater Res,1999, 14(6):2296.
37 Qu S, Huang Y, Nix W D, et al. Indenter tip radius effect on the Nix-Gao relation in micro-and nanoindentation hardness experiments [J]. J Mater Res,2004,19(11):3423.
38 Zhao M, Chen X, Xiang Y, et al. Measuring elastoplastic properties of thin films on an elastic substrate using sharp indentation [J]. Acta Mater, 2007,55(18):6260.
39 Zhao M, Xiang Y, Xu J, et al. Determining mechanical properties of thin films from the loading curve of nanoindentation testing [J]. Thin Solid Films,2008, 516(21):7571.
40 Cheng Y T, Cheng C M. Can stress-strain relationships be obtained from indentation curves using conical and pyramidal indenters? [J]. J Mater Res, 1999,14(9):3493.
41 Liu L, Ogasawara N, Chiba N, et al. Can indentation technique measure unique elastoplastic properties? [J]. J Mater Res, 2009,24(3):784.
[1] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[2] 陈宇良, 王双翼, 李洪, 李培泽. 复杂应力状态下玻璃纤维再生混凝土损伤演变及应力-应变本构关系研究[J]. 材料导报, 2024, 38(24): 23080024-9.
[3] 冯虎, 闵智爽, 郭奥飞, 朱必洋, 陈兵, 黄昊. 超高韧性磷酸镁水泥基复合材料压缩力学性能研究[J]. 材料导报, 2024, 38(17): 23090058-12.
[4] 张洪智, 金祖权, 姜能栋, 葛智, Erik Schlangen, 凌一峰, Branko Šavija, 王铮. 基于分段步进式弹塑性格构模型的混凝土破坏过程细观模拟[J]. 材料导报, 2023, 37(8): 21100198-7.
[5] 段品佳, 毕晓星, 李宇航, 刘娟红, 周大卫, 程立年, 娄百川. 混凝土超低温力学特性及本构关系研究[J]. 材料导报, 2022, 36(18): 21010199-5.
[6] 张苗, 田青, 屈孟娇, 祁帅, 姚田帅, 许鸽龙, 邓德华. 水泥乳化沥青砂浆应力-应变本构关系的研究[J]. 材料导报, 2022, 36(15): 21010104-5.
[7] 丁鑫, 肖晓春, 吴迪, 吕祥锋, 潘一山, 白润欣. 考虑初始孔隙性的含瓦斯煤岩力学本构关系与损伤演化研究[J]. 材料导报, 2021, 35(18): 18096-18103.
[8] 郑山锁, 杨建军, 郑跃, 董立国, 温桂峰, 姬金铭. 锈蚀钢筋混凝土粘结滑移性能综述[J]. 材料导报, 2020, 34(Z2): 221-226.
[9] 孙杨,乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(3): 3116-3125.
[10] 冯振宇, 李恒晖, 刘义, 解江, 牟浩蕾, 惠旭龙, 舒挽. 中低应变率下7075-T7351铝合金本构与失效模型对比[J]. 材料导报, 2020, 34(12): 12088-12093.
[11] 袁飞洋, 万强, 张灿阳, 李旭. 磁流变弹性体力磁耦合本构关系的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 1-12.
[12] 黄哲远, 王文先, 闫志峰, 张婷婷. 定向凝固多晶硅在微纳尺度下的力学性能研究*[J]. 《材料导报》期刊社, 2017, 31(14): 11-15.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed