Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 2014-2018    https://doi.org/10.11896/cldb.18050073
  金属与金属基复合材料 |
高铌TiAl合金中包晶α相消除的热力学及动力学分析
王义飞, 高东强, 田普建, 任威, 刘延辉, 宋文杰, 杨艳玲, 杨光
陕西科技大学机电工程学院,西安 710021
Thermodynamics and Dynamics Analysis on the Elimination of the Peritecticα Phase in a High Nb Containing TiAl Alloy
WANG Yifei, GAO Dongqiang, TIAN Pujian, REN Wei, LIU Yanhui, SONG Wenjie, YANG Yanling,YANG Guang
College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xian 710021
下载:  全 文 ( PDF ) ( 2300KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用β单相区热处理消除了高铌TiAl合金中的包晶α相(αp),并从热力学和动力学角度分析了包晶α相与热处理温度、保温时间的相关性。结果表明:铸态高铌TiAl合金呈现出显著的凝固偏析,导致包晶α相的产生,通过在1 520 ℃保温20 min可消除铸态组织中的包晶α相。上述现象归因于:(1)热力学方面,在1 520 ℃热处理时,包晶α相为亚稳相,其稳定性显著降低,会发生αp→β相变;(2)动力学方面,包晶α相的消除与Al、Nb元素的扩散密切相关,在1 520 ℃保温时,Al、Nb元素在枝晶间和枝晶干相互扩散。随着保温时间的延长,枝晶间Al元素呈指数衰减,当保温时间为20 min时,由Al元素富集造成的包晶α相被完全消除,合金整体以β凝固路径发生相变,获得了均匀细小的近片层组织。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王义飞
高东强
田普建
任威
刘延辉
宋文杰
杨艳玲
杨光
关键词:  高铌TiAl合金  包晶α相  热力学分析  动力学分析    
Abstract: In this work, a heat treatment in single β region was utilized to remove the peritectic α phase (αp) in a high Nb containing TiAl alloy and the relationships among treatment temperature, annealing time and peritectic α phase were analyzed from the aspect of thermodynamics and dynamics. The results showed that the as-cast high Nb containing TiAl alloys exhibited a significant solidification segregation, resulting in the formation of peritectic α phase, and the αp phase was eliminated by a heat treatment in single β region, i.e., 1 520 ℃ for 20 min. These phenomena were attributed to the instability of peritectic α phase and interdiffusion of Al and Nb elements in local regions. The thermodynamic instability led to the occurrence of αp→β transformation. The Al concentration in interdendritic regions decreased exponentially with annealing time. After the heat treatment at 1 520 ℃ for 20 min, the peritectic α phase was completely removed.The alloy undergoes a phase transition in the β solidification path, and a uniform and fine near-lamellar structure is obtained.
Key words:  high Nb containing TiAl alloys    peritectic α phase    thermodynamics analysis    dynamics analysis
                    发布日期:  2019-05-31
ZTFLH:  TG111  
基金资助: 国家自然科学基金(51701107;51464020);陕西省自然科学基础研究计划(2018JQ5161)
通讯作者:  yangguang@sust.edu.cn   
作者简介:  王义飞,2018年6月毕业于陕西科技大学,获得学士学位。现就读于陕西科技大学,机电工程学院研究生,主要从事TiAl合金相变行为研究。杨光,男,工学博士,副教授,硕士生导师。 2009年于四川大学金属材料工程获得学士学位, 2016年11月毕业于西北工业大学材料加工工程专业并获得工学博士学位。2016年在陕西科技大学机电工程学院材料加工工程系进行教学科研工作。主持和参与国家级和省部级等项目9项,其中主持国家自然科学基金青年项目1项和陕西省自然科学基础研究计划1项,陕西科技大学 “引进博士科研启动基金” 项目1项,参与国家自然科学基金、“973”子课题、航空基金等项目6项。在国际材料类期刊Acta Materialia, Journal of Alloys and Compounds,Intermetallics等高水平期刊发表论文30余篇。申请国家发明专利7项,已授权3项。研究领域主要包括轻金属的显微组织演化及控制、金属材料的变形行为及组织表征等。
引用本文:    
王义飞, 高东强, 田普建, 任威, 刘延辉, 宋文杰, 杨艳玲, 杨光. 高铌TiAl合金中包晶α相消除的热力学及动力学分析[J]. 材料导报, 2019, 33(12): 2014-2018.
WANG Yifei, GAO Dongqiang, TIAN Pujian, REN Wei, LIU Yanhui, SONG Wenjie, YANG Yanling,YANG Guang. Thermodynamics and Dynamics Analysis on the Elimination of the Peritecticα Phase in a High Nb Containing TiAl Alloy. Materials Reports, 2019, 33(12): 2014-2018.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050073  或          http://www.mater-rep.com/CN/Y2019/V33/I12/2014
1 Kothari K,Radhakrishnan R,Wereley N M.Progress in Aerospace Sciences,2012, 55,1.
2 Noda T. Intermetallics,1998, 6(7),709.
3 Chen G, Peng Y B, Zheng G, et al. Nature Materials, 2016, 15, 876.
4 Chen G L, Zhang W J, Liu Z C, et al. Gamma titanium aluminides, TMS, Warrendale, PA,1999, pp. 371.
5 Xu X J, Lin J P, Wang Y L, et al.Journal of Alloys and Compounds, 2006, 414(1),131.
6 Jin Y, Wang J N, Yang J, et al. Scripta Materialia, 2004, 51(2),113.
7 Chen G L, Xu X J, Teng Z K, et al. Intermetallics, 2007, 15(5),625.
8 Yang G, Kou H, Liu Y, et al.Intermetallics,2015, 63,1.
9 Ding X F, Lin J P, Zhang L Q, et al. Intermetallics, 2011, 19(8),1115.
10Imayev V, Oleneva T, Imayev R, et al. Intermetallics, 2012, 26,91.
11Xu X J, Lin J P, Teng Z K, et al. Materials Letters, 2007, 61(2),369.
12Xu Zhengfang, Xu Xiangjun, Lin Junpin, et al. Journal of Materials Engineering, 2007(9),42(in Chinese).
许正芳,徐向俊,林均品,等.材料工程, 2007 (9),42.
13Ding X F, Lin J P, Zhang L Q, et al. Transactions of Nonferrous Metals Society of China, 2011, 21(1),26.
14Xu Lihua, Xu Xiangjun, Wang Yanli, et al. Journal of Aeronautical Materials, 2005, 25(4),16.
徐丽华, 徐向俊, 王艳丽, 等.航空材料学报, 2005, 25(4),16.
15Xu X J, Xu L H, Lin J P, et al. Intermetallics, 2005, 13(3),337.
16Yang G,Kou H C,Yang J R, et al. Acta Materialia, 2016,112,121.
17Han P, Kou H C, Yang J R, et al. Rare Metals, 2016, 35 (1),35.
18Liu Y, Hu R, Kou H C, et al.Rare Metals, 2015, 34 (6),381.
19Liu Y, Hu R, Yang G, et al. Materials Characterization, 2015, 107,156.
20Johnson D R, Inui H, Muto S, et al. Acta Materialia, 2006, 54(4),1077.
21Purdy G R, Kirkaldy J S. Metallurgical Transactions, 1971, 2(2),371.
22Mishin Y, Herzig C. Acta Materialia, 2000, 48(3),589.
23Liu Y, Pan T, Zhang L, et al. Journal of Alloys & Compounds, 2009, 476(1-2),429.
[1] 何闯,刘林,黄太文,杨文超,张军,傅恒志. 镍基单晶高温合金中的位错及其对蠕变行为的影响[J]. 材料导报, 2019, 33(17): 2918-2928.
[2] 黄广棋,张桂凯,罗朝以,唐涛. Fe-Al金属间化合物氢脆效应研究现状[J]. 《材料导报》期刊社, 2018, 32(11): 1878-1883.
[3] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[4] 李志峰,何永全,曹光明,汤军舰,刘振宇. 热轧钢材氧化铁皮的高温形变机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 259-262.
[5] 马坤, 刘亚, 涂浩, 苏旭平, 王建华. 镁含量和硅对铁-锌铝镁合金固-液扩散偶中Fe-Al反应层的影响[J]. 《材料导报》期刊社, 2017, 31(6): 61-65.
[6] 李飞, 廖怡君, 王旭, 朱庆丰, 崔建忠. Zr元素对纯铝细化机理的电子理论研究[J]. 材料导报, 2018, 32(18): 3190-3194.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed