Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22060203-6    https://doi.org/10.11896/cldb.22060203
  高分子与聚合物基复合材料 |
聚(丙烯酸酯-硅氧烷)杂化乳胶粒子的制备及性能
张继生, 米扬, 王艳, 赵磊, 秦甜甜, 孟凡成, 刘国军*
大连工业大学纺织与材料工程学院,辽宁 大连 116000
Preparation and Properties of Poly(acrylate-siloxane) Hybrid Latex Particles
ZHANG Jisheng, MI Yang, WANG Yan, ZHAO Lei, QIN Tiantian, MENG Fancheng, LIU Guojun*
School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116000, Liaoning, China
下载:  全 文 ( PDF ) ( 6980KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用半连续-核壳乳液聚合技术制备了硬核-软壳且直链型双乙烯基封端的聚硅氧烷(VPS)沿半径方向非均匀分布的聚(丙烯酸酯-硅氧烷)杂化乳胶粒子。通过TEM、粒径分析、DSC、正置金相显微镜、EDS、ATR-FTIR、接触角(CA)等对杂化乳胶粒子及其膜的组成、结构和性能进行了表征与测试。结果表明:杂化乳胶粒子呈核壳结构,随壳层VPS含量增加,其平均粒径由119.4 nm增大到138.4 nm; VPS可迁移、富集到乳胶膜表面形成尺寸约1 μm的VPS相,VPS含量增加和退火处理可提高杂化乳胶膜表面VPS的富集程度和相畴尺寸;杂化乳胶膜双重玻璃化转变的微相分离结构及VPS相畴的形成使其抗黏连性、柔韧性和硬度均得到提高,水接触角由61°提高到104°,疏水性显著增强,吸水率明显降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张继生
米扬
王艳
赵磊
秦甜甜
孟凡成
刘国军
关键词:  丙烯酸酯  双乙烯基封端聚硅氧烷  杂化乳胶粒子  核壳结构    
Abstract: Poly(acrylate-siloxane) hybrid latex particles with hard core soft shell structure and non-uniform distribution along the radius of particle for linear divinyl-terminated polysiloxane(VPS) were prepared by semicontinuous core-shell emulsion polymerization. The composition, structure, and properties of the hybrid latex particles and their films were characterized and tested by transmission electron microscope(TEM), particle size analysis, differential scanning calorimetry (DSC), metallographic microscope, energy dispersive spectrometer (EDS), fourier transform infrared spectroscopy (FTIR), and contact angle (CA). The results show that the hybrid latex particles have a core-shell structure, and the average particle size increases from 119.4 nm to 138.4 nm with the increase of VPS content in the shell layer. The increase of VPS content and annealing treatment can improve the surface enrichment degree and domain size of VPS. The microphase separation structure of hybrid latex film with double glass transition phenomenon and the formation of the VPS domain phase have improved its block resistance, flexibility and hardness at the same time. The water contact angle has a increase from 61° to 104°, the hydrophobicity is increased significantly, and the water absorption is decreased significantly.
Key words:  acrylates    divinyl terminated polysiloxane    hybrid latex particles    core-shell structure
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  TQ31  
基金资助: 辽宁省教育厅面上项目(LJKZ0533)
通讯作者:  * 刘国军,大连工业大学纺织与材料工程学院副教授。2003年在中山大学高分子化学与物理专业获博士学位,目前主要从事高分子的设计与合成研究,发表论文50余篇,授权专利6项。lgjzgx@163.com   
作者简介:  张继生,2018年6月于大连工业大学获得工学学士学位。现为大连工业大学纺织与材料工程学院硕士研究生,在刘国军副教授的指导下进行研究。目前主要研究领域为水性木器涂料的制备与应用。
引用本文:    
张继生, 米扬, 王艳, 赵磊, 秦甜甜, 孟凡成, 刘国军. 聚(丙烯酸酯-硅氧烷)杂化乳胶粒子的制备及性能[J]. 材料导报, 2023, 37(23): 22060203-6.
ZHANG Jisheng, MI Yang, WANG Yan, ZHAO Lei, QIN Tiantian, MENG Fancheng, LIU Guojun. Preparation and Properties of Poly(acrylate-siloxane) Hybrid Latex Particles. Materials Reports, 2023, 37(23): 22060203-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060203  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22060203
1 Gong Y, Shao T, Chen X, et al. Chemical Papers, 2020, 74, 2875.
2 Lu Z, Guan W, Tang L. Progress in Organic Coatings, 2019, 132, 328.
3 Wang B, Wu Z, Zhang D, et al. Progress in Organic Coatings, 2018, 118, 122.
4 Chen Z, Wang Q, Zhang Z, et al. Reactive and Functional Polymers, 2021, 163, 104910.
5 Limousin E, Ballard N, Asua J M. Progress in Organic Coatings, 2019, 129, 69.
6 Lin X, Yang M, Jeong H, et al. Journal of Membrane Science, 2016, 506, 22.
7 Shao T, Gong Y, Chen X, et al. Chemical Papers, 2021, 75, 5561.
8 Zheng X, Cai Z, Lyu Z, et al. Materials Today Communications, 2020, 25, 101590.
9 Wu Y, Zhu C, Zheng Z Y, et al. Reactive and Functional Polymers, 2020, 148, 104484.
10 Ma G, Shen Y, Gao R, et al. Journal of Polymer Research, 2017, 24, 36.
11 Ma L, Huang J J, He H, et al. Materials Reports, 2021, 35(22), 22166 (in Chinese).
马丽, 黄建建, 何慧, 等. 材料导报, 2021, 35(22), 22166.
12 Bai R, Teng Q, Feng H, et al. Applied Surface Science, 2012, 258, 7683.
13 Hou F, Wang J M, Wang H X, et al. Applied Chemical Industry, 2009, 38(2), 236 (in Chinese).
侯锋, 王建明, 王鸿晓, 等.应用化工, 2009, 38(2), 236.
14 Qu X W, Liu G D, Zhang L C, et al. Polymer Materials Science and Engineering, 2002(4), 129 (in Chinese).
瞿雄伟, 刘国栋, 张留成, 等.高分子材料科学与工程, 2002(4), 129.
15 Li L J, Zhao D M, Gan Q Y, et al. Polymer Materials Science and Engineering, 2011, 27(4), 82 (in Chinese).
李连杰, 赵冬梅, 甘泉瑛, 等.高分子材料科学与工程, 2011, 27(4),82.
16 Zhai L, Ji H F, Yao Y M, et al. Materials Reports, 2019, 33(4), 705 (in Chinese).
翟乐, 吉海峰, 姚艳梅, 等.材料导报, 2019, 33(4), 705.
17 Zhang Y F, Zhang R, Yang C L, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 549.
18 Lei M, Huang W, Sun J, et al. Powder Technology, 2021, 389, 392.
19 Dvornic P R, Lenz R W. Macromolecules, 2002, 25, 3769.
[1] 黄贤敏, 李紫薇, 张晓妍, 刘慧, 高红艳, 汪海. 核壳结构的V10O24·12H2O@ACFC:一种高性能对称超级电容器电极材料[J]. 材料导报, 2023, 37(21): 22050088-8.
[2] 易周, 崔世宇, 罗军明, 初雨轩. 溶胶-凝胶法制备核壳结构MoSi2@Al2O3颗粒及其形成机理[J]. 材料导报, 2023, 37(16): 22010273-6.
[3] 邱汉宇, 刘红晶, 姚辉, 刘雪莉, 高洁. 纳米有机杂化材料(NOHMs)用于CO2捕集的研究进展[J]. 材料导报, 2023, 37(16): 21120114-11.
[4] 马仁博, 胡焕波, 沈婉婷, 吴唯. 聚丙烯酸丁酯/受阻酚阻尼杂化体系的相容性研究[J]. 材料导报, 2023, 37(15): 21120201-6.
[5] 苏宇, 翁凌, 王小明, 关丽珠, 张笑瑞. 核壳结构SiCNWs@SiO2/PVDF复合材料的制备与介电储能特性[J]. 材料导报, 2023, 37(11): 22010127-11.
[6] 齐致雍, 高凤雨, 唐晓龙, 易红宏, 杜影. 核壳催化剂用于大气污染控制的研究进展[J]. 材料导报, 2023, 37(10): 21060234-12.
[7] 刘济民, 朱慧敏, 潘健, 宋力雅, 刘珊, 花亚冰, 石锐, 徐亮. 新型可生物降解的组织可黏附材料的合成与表征[J]. 材料导报, 2022, 36(3): 20120176-6.
[8] 姜超, 华楚侨, 温变英. MOFs基核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2022, 36(16): 21030206-10.
[9] 郭佳乐, 赵齐仲, 田方华, 张垠, 周超, 杨森. 室温交换偏置效应的研究进展[J]. 材料导报, 2021, 35(Z1): 297-301.
[10] 马长坡, 刘兴琛, 李永赞, 张健, 亢敏霞, 邱祖民. 聚丙烯酸酯材料改性技术概况[J]. 材料导报, 2021, 35(15): 15212-15219.
[11] 谢登敏, 钱春香, 张霄. 微生物矿化沉积技术强化核壳结构再生粗骨料[J]. 材料导报, 2021, 35(1): 1030-1035.
[12] 杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
[13] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[14] 翟乐, 吉海峰, 姚艳梅, 瞿雄伟. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.
[15] 杨亚文, 王娜, 任俊芳, 高贵, 陈生圣, 王宏刚. 核壳纳米复合润滑材料研究进展[J]. 材料导报, 2019, 33(19): 3242-3250.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed