Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22120195-7    https://doi.org/10.11896/cldb.22120195
  高分子与聚合物基复合材料 |
聚脲涂覆泡沫铝压缩力学性能及吸能特性研究
郭辉1,2, 冯晶晶1, 陈玉1,*, 孙亚斌1, 邱爽1
1 西南科技大学土木工程与建筑学院,四川 绵阳 621010
2 工程材料与结构冲击振动四川省重点实验室,四川 绵阳 621010
Study on Compressive Mechanical Properties and Energy-absorption Characteristics of Polyurea-coated Foam Aluminum
GUO Hui1,2, FENG Jingjing1, CHEN Yu1,*, SUN Yabin1, QIU Shuang1
1 School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
2 Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province, Mianyang 621010, Sichuan, China
下载:  全 文 ( PDF ) ( 6875KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了增强泡沫铝的抗侵彻性能,本工作将聚脲涂覆于三种相对密度的泡沫铝试件端面制备了聚脲涂覆泡沫铝复合件,研究了聚脲涂覆方式对复合件准静态和动态压缩力学行为及吸能特性的影响规律,讨论了聚脲涂覆泡沫铝的变形失效特征。结果表明:聚脲涂覆泡沫铝应力-应变曲线的线弹性段和初始屈服平台段应变率敏感性较弱,致密化段具有显著应变率敏感性;在动态加载下,泡沫铝试件端面涂覆聚脲有助于缓解应力-应变曲线屈服平台段锯齿振荡现象,可以提升其致密应变对应的理想吸能效率值,尤其在背压面涂覆聚脲的泡沫铝试件的理想吸能效率值提升效果最明显;在准静态加载下,背压面涂覆聚脲的泡沫铝试件加载密实后仍呈“圆柱”状,变形较为均匀;在动态加载下,聚脲的涂覆可有效防止冲击荷载下泡沫铝碎片飞溅造成的危害。该研究可为聚脲涂覆泡沫铝复合板在军用方舱结构中的应用提供理论参考依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭辉
冯晶晶
陈玉
孙亚斌
邱爽
关键词:  泡沫铝  聚脲  应变率  力学性能  吸能特性    
Abstract: In order to improve the anti-penetration capability of foam aluminum, polyurea-coated foam aluminum composites were prepared by coating polyurea on the end faces of foam aluminum specimens with three relative densities. The effect of polyurea coating methods on the quasi-static and dynamic compressive mechanical behavior and energy-absorption characteristics of the composites was studied, and the deformation characteristics of polyurea-coated foam aluminum was discussed. The results show that the linear elastic section and the initial yield plateau section of the stress-strain curves of polyurea-coated foam aluminum are less sensitive to strain rate, and the densification section has significant strain rate sensitivity. Under dynamic loading, the polyurea coating on the end face of the foam aluminum specimen is helpful to alleviate the sawtooth oscillation in the yield plateau section of the stress-strain curves, and can improve the ideal energy-absorption efficiency corresponding to its densification strain, especially the improvement effect of ideal energy absorption efficiency of foam aluminum specimen coated with polyurea on the back pressure surface is the most obvious. Under quasi-static loading, the foam aluminum specimen coated with polyurea on the back pressure surface is still cylindrical after loading, and the deformation is relatively uniform. Under dynamic loading, the polyurea coating can effectively prevent the damage caused by the splashing of foam aluminum fragments under impact load. This study can provide a theoretical reference for the application of polyurea-coated foam aluminum composite plate in the military shelter structure.
Key words:  foam aluminum    polyurea    strain rate    mechanical property    energy-absorption characteristics
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  TB333  
基金资助: 国家自然科学基金(12272330);四川省自然科学基金(2022NSFSC0338)
通讯作者:  * 陈玉,西南科技大学土木工程与建筑学院教师。2015年西南科技大学建筑学专业本科毕业, 2018年西南科技大学工业设计专业硕士毕业后到西南科技大学工作至今。目前主要从事新型建筑节能材料力学性能、工程结构动态损伤与失效机理研究工作。发表论文40余篇,授权国家发明专利10余项。chenyu1991@swust.edu.cn   
作者简介:  郭辉,西南科技大学土木工程与建筑学院副教授、硕士研究生导师。2010年河南理工大学土木工程专业本科毕业,2013年西南科技大学结构工程专业硕士毕业,2018年西北工业大学固体力学专业博士毕业后到西南科技大学工作至今。目前主要从事极端环境下先进材料及结构的力学行为及其优化设计研究工作。发表论文60余篇,包括Construction and Building Materials、Progress in Organic Coatings、Materials & Design、 Polymer Testing等。
引用本文:    
郭辉, 冯晶晶, 陈玉, 孙亚斌, 邱爽. 聚脲涂覆泡沫铝压缩力学性能及吸能特性研究[J]. 材料导报, 2023, 37(23): 22120195-7.
GUO Hui, FENG Jingjing, CHEN Yu, SUN Yabin, QIU Shuang. Study on Compressive Mechanical Properties and Energy-absorption Characteristics of Polyurea-coated Foam Aluminum. Materials Reports, 2023, 37(23): 22120195-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120195  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22120195
1 Li L C, Zhang H X, Niu Z Y, et al. Packaging Engineering, 2017, 38(23), 37 (in Chinese).
李良春, 张会旭, 牛正一, 等. 包装工程, 2017, 38(23), 37.
2 Zhang H Y, Ouyang B S, Zhu G J. Powder Metallurgy Technology, 2021, 39(1), 69 (in Chinese).
张红英, 欧阳八生, 朱国军. 粉末冶金技术, 2021, 39(1), 69.
3 Guo H, Guo W G, Amirkhizi A V, et al. Polymer Testing, 2016, 53, 234.
4 Fang Z Q, Lyu P, Zhang R, et al. Chinese Journal of High Pressure Physics, 2022, 36(2), 43 (in Chinese).
方志强, 吕平, 张锐, 等. 高压物理学报, 2022, 36(2), 43.
5 Zhang P, Zhao P D, Wang Z J, et al. Explosion and Shock Waves, 2019, 39(1), 101 (in Chinese).
张鹏, 赵鹏铎, 王志军, 等. 爆炸与冲击, 2019, 39(1), 101.
6 Iqbal N, Sharma P K, Kumar D, et al. Construction and Building Mate-rials, 2018, 175, 682.
7 Barczewskia M, Aniskoa J, Plasecki A, et al. Composites Part B: Engineering, 2021, 225, 109286.
8 Sarva S S, Deschanel S, Boyce M C. Polymer, 2007, 48(8), 2208.
9 Pathak J A, Twigg J N, Nugent K E, et al. Macromolecules, 2008, 41(20), 7543.
10 Yi J, Boyce M C, Lee G F, et al. Polymer, 2006, 47(1), 319.
11 Villegas G C. Failure mechanisms of polyurea under high strain-rate. Ph.D. Thesis, University of California Los Angeles, USA, 2017.
12 Huang X F, Zhang Z H, Wu J H. Journal of Vibration and Shock, 2021, 40(17), 259 (in Chinese).
黄秀峰, 张振华, 巫继航. 振动与冲击, 2021, 40(17), 259.
13 Chu D, Li Z, Yao K, et al. International Journal of Impact Engineering, 2022, 163, 104181.
14 Sun P F, Huang J, Lv P, et al. Materials Reports, 2020, 34(S2), 1623 (in Chinese).
孙鹏飞, 黄舰, 吕平, 等. 材料导报, 2020, 34(S2), 1623.
15 Wang Q, Jia Z J, Zhao P D, et al. Chinese Journal of High Pressure Phy-sics, 2020, 34(6), 53 (in Chinese).
王琪, 贾子健, 赵鹏铎, 等. 高压物理学报, 2020, 34(6), 53.
16 Raman S N, Ngo T, Mendis P, et al. Advances in Materials Science and Engineering, 2012, 2012, 754142.
17 Ju-Hyung H, Na-Hyun Y, Jong-Kwon C, et al. Composite Structures, 2011, 93 (8), 2070.
18 Amini M R, Simon J, Nemat-Nasser S. Mechanics of Materials, 2010, 42(6), 615.
19 Tekalur S A, Shukla A, Shivakumar K. Composite Structures, 2008, 84 (3), 271.
20 Xu S. The impact resistance study of polyurea composite structures. Master's Thesis, Beijing Institute of Technology, China, 2015 (in Chinese).
许帅. 聚脲弹性体复合结构抗冲击防护性能研究. 硕士学位论文, 北京理工大学, 2015.
21 Chen L, Guo H, Guo W G, et al. Journal of Testing and Evaluation, 2020, 48(6), 4636.
22 Liu J G, He S Y, Zhao H, et al. International Journal of Impact Engineering, 2018, 114(3), 69.
23 Tao J L, Chen Y Z, Tian C J, et al. In: Conference Record of Procee-dings of the 3rd National Conference on Experimental Technology of Explosive Mechanics. Hefei, 2004, pp. 18 (in Chinese).
陶俊林, 陈裕泽, 田常津, 等. 第三届全国爆炸力学实验技术交流会论文集. 合肥, 2004, pp. 18.
24 Chen H, Guo X, Song L. Journal of Ningbo University (NSEE), 2018, 31(4), 70 (in Chinese).
陈浩, 郭鑫, 宋力.宁波大学学报(理工版), 2018, 31(4), 70.
25 Wang P F, Xu S L, Zheng H, et al. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5), 928 (in Chinese).
王鹏飞, 徐松林, 郑航, 等. 力学学报, 2012, 44(5), 928.
26 Banhart J, Baumeisier J. Journal of Materials Science, 1998, 33(6), 1431.
27 Raj R E, Parameswaran V, Daninel B S S. Materials Science and Engineering A, 2009, 526, 11.
28 Alteneiji M, Krishnan K, Guan Z W, et al. Composite Structures, 2023, 303, 116289.
29 Liu H J, Wang W L, Miao R, et al. Chinese Journal of High Pressure Physics, 2019, 33(1), 015104 (in Chinese).
刘宏杰, 王伟力, 苗润, 等. 高压物理学报, 2019, 33(1), 015104.
30 Miltz J, Gruenbaum G. Polymer Engineering & Science, 1981, 21(15), 1010.
31 Li Q M, Magkipiadis I, Harrigan J J. Journal of Cellular Plastics, 2006, 42(5), 371.
[1] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[2] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[3] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[4] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[5] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[6] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[7] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[8] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[9] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[10] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[11] 刘雄飞, 和西民. 低应变率荷载作用下梯度泡沫铝力学性能研究[J]. 材料导报, 2023, 37(7): 22010266-7.
[12] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[13] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[14] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[15] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed