Study on Compressive Mechanical Properties and Energy-absorption Characteristics of Polyurea-coated Foam Aluminum
GUO Hui1,2, FENG Jingjing1, CHEN Yu1,*, SUN Yabin1, QIU Shuang1
1 School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China 2 Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province, Mianyang 621010, Sichuan, China
Abstract: In order to improve the anti-penetration capability of foam aluminum, polyurea-coated foam aluminum composites were prepared by coating polyurea on the end faces of foam aluminum specimens with three relative densities. The effect of polyurea coating methods on the quasi-static and dynamic compressive mechanical behavior and energy-absorption characteristics of the composites was studied, and the deformation characteristics of polyurea-coated foam aluminum was discussed. The results show that the linear elastic section and the initial yield plateau section of the stress-strain curves of polyurea-coated foam aluminum are less sensitive to strain rate, and the densification section has significant strain rate sensitivity. Under dynamic loading, the polyurea coating on the end face of the foam aluminum specimen is helpful to alleviate the sawtooth oscillation in the yield plateau section of the stress-strain curves, and can improve the ideal energy-absorption efficiency corresponding to its densification strain, especially the improvement effect of ideal energy absorption efficiency of foam aluminum specimen coated with polyurea on the back pressure surface is the most obvious. Under quasi-static loading, the foam aluminum specimen coated with polyurea on the back pressure surface is still cylindrical after loading, and the deformation is relatively uniform. Under dynamic loading, the polyurea coating can effectively prevent the damage caused by the splashing of foam aluminum fragments under impact load. This study can provide a theoretical reference for the application of polyurea-coated foam aluminum composite plate in the military shelter structure.
作者简介: 郭辉,西南科技大学土木工程与建筑学院副教授、硕士研究生导师。2010年河南理工大学土木工程专业本科毕业,2013年西南科技大学结构工程专业硕士毕业,2018年西北工业大学固体力学专业博士毕业后到西南科技大学工作至今。目前主要从事极端环境下先进材料及结构的力学行为及其优化设计研究工作。发表论文60余篇,包括Construction and Building Materials、Progress in Organic Coatings、Materials & Design、 Polymer Testing等。
引用本文:
郭辉, 冯晶晶, 陈玉, 孙亚斌, 邱爽. 聚脲涂覆泡沫铝压缩力学性能及吸能特性研究[J]. 材料导报, 2023, 37(23): 22120195-7.
GUO Hui, FENG Jingjing, CHEN Yu, SUN Yabin, QIU Shuang. Study on Compressive Mechanical Properties and Energy-absorption Characteristics of Polyurea-coated Foam Aluminum. Materials Reports, 2023, 37(23): 22120195-7.
1 Li L C, Zhang H X, Niu Z Y, et al. Packaging Engineering, 2017, 38(23), 37 (in Chinese). 李良春, 张会旭, 牛正一, 等. 包装工程, 2017, 38(23), 37. 2 Zhang H Y, Ouyang B S, Zhu G J. Powder Metallurgy Technology, 2021, 39(1), 69 (in Chinese). 张红英, 欧阳八生, 朱国军. 粉末冶金技术, 2021, 39(1), 69. 3 Guo H, Guo W G, Amirkhizi A V, et al. Polymer Testing, 2016, 53, 234. 4 Fang Z Q, Lyu P, Zhang R, et al. Chinese Journal of High Pressure Physics, 2022, 36(2), 43 (in Chinese). 方志强, 吕平, 张锐, 等. 高压物理学报, 2022, 36(2), 43. 5 Zhang P, Zhao P D, Wang Z J, et al. Explosion and Shock Waves, 2019, 39(1), 101 (in Chinese). 张鹏, 赵鹏铎, 王志军, 等. 爆炸与冲击, 2019, 39(1), 101. 6 Iqbal N, Sharma P K, Kumar D, et al. Construction and Building Mate-rials, 2018, 175, 682. 7 Barczewskia M, Aniskoa J, Plasecki A, et al. Composites Part B: Engineering, 2021, 225, 109286. 8 Sarva S S, Deschanel S, Boyce M C. Polymer, 2007, 48(8), 2208. 9 Pathak J A, Twigg J N, Nugent K E, et al. Macromolecules, 2008, 41(20), 7543. 10 Yi J, Boyce M C, Lee G F, et al. Polymer, 2006, 47(1), 319. 11 Villegas G C. Failure mechanisms of polyurea under high strain-rate. Ph.D. Thesis, University of California Los Angeles, USA, 2017. 12 Huang X F, Zhang Z H, Wu J H. Journal of Vibration and Shock, 2021, 40(17), 259 (in Chinese). 黄秀峰, 张振华, 巫继航. 振动与冲击, 2021, 40(17), 259. 13 Chu D, Li Z, Yao K, et al. International Journal of Impact Engineering, 2022, 163, 104181. 14 Sun P F, Huang J, Lv P, et al. Materials Reports, 2020, 34(S2), 1623 (in Chinese). 孙鹏飞, 黄舰, 吕平, 等. 材料导报, 2020, 34(S2), 1623. 15 Wang Q, Jia Z J, Zhao P D, et al. Chinese Journal of High Pressure Phy-sics, 2020, 34(6), 53 (in Chinese). 王琪, 贾子健, 赵鹏铎, 等. 高压物理学报, 2020, 34(6), 53. 16 Raman S N, Ngo T, Mendis P, et al. Advances in Materials Science and Engineering, 2012, 2012, 754142. 17 Ju-Hyung H, Na-Hyun Y, Jong-Kwon C, et al. Composite Structures, 2011, 93 (8), 2070. 18 Amini M R, Simon J, Nemat-Nasser S. Mechanics of Materials, 2010, 42(6), 615. 19 Tekalur S A, Shukla A, Shivakumar K. Composite Structures, 2008, 84 (3), 271. 20 Xu S. The impact resistance study of polyurea composite structures. Master's Thesis, Beijing Institute of Technology, China, 2015 (in Chinese). 许帅. 聚脲弹性体复合结构抗冲击防护性能研究. 硕士学位论文, 北京理工大学, 2015. 21 Chen L, Guo H, Guo W G, et al. Journal of Testing and Evaluation, 2020, 48(6), 4636. 22 Liu J G, He S Y, Zhao H, et al. International Journal of Impact Engineering, 2018, 114(3), 69. 23 Tao J L, Chen Y Z, Tian C J, et al. In: Conference Record of Procee-dings of the 3rd National Conference on Experimental Technology of Explosive Mechanics. Hefei, 2004, pp. 18 (in Chinese). 陶俊林, 陈裕泽, 田常津, 等. 第三届全国爆炸力学实验技术交流会论文集. 合肥, 2004, pp. 18. 24 Chen H, Guo X, Song L. Journal of Ningbo University (NSEE), 2018, 31(4), 70 (in Chinese). 陈浩, 郭鑫, 宋力.宁波大学学报(理工版), 2018, 31(4), 70. 25 Wang P F, Xu S L, Zheng H, et al. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5), 928 (in Chinese). 王鹏飞, 徐松林, 郑航, 等. 力学学报, 2012, 44(5), 928. 26 Banhart J, Baumeisier J. Journal of Materials Science, 1998, 33(6), 1431. 27 Raj R E, Parameswaran V, Daninel B S S. Materials Science and Engineering A, 2009, 526, 11. 28 Alteneiji M, Krishnan K, Guan Z W, et al. Composite Structures, 2023, 303, 116289. 29 Liu H J, Wang W L, Miao R, et al. Chinese Journal of High Pressure Physics, 2019, 33(1), 015104 (in Chinese). 刘宏杰, 王伟力, 苗润, 等. 高压物理学报, 2019, 33(1), 015104. 30 Miltz J, Gruenbaum G. Polymer Engineering & Science, 1981, 21(15), 1010. 31 Li Q M, Magkipiadis I, Harrigan J J. Journal of Cellular Plastics, 2006, 42(5), 371.