Please wait a minute...
材料导报  2023, Vol. 37 Issue (14): 21110135-7    https://doi.org/10.11896/cldb.21110135
  金属与金属基复合材料 |
960高强钢脉冲TIG电弧增材制造热过程及组织与力学性能研究
陆万全1,2, 乔及森1,2,*, 王磊1,2, 刘永涛1,2, 冯睿1,2, 祝伟1,2
1 兰州理工大学材料科学与工程学院,兰州 730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Study on Thermal Process, Microstructure and Mechanical Properties of Thin-walled Components During Pulsed TIG Wire Arc Additive Manufacturing of 960 High-strength Steel
LU Wanquan1,2, QIAO Jisen1,2,*, WANG Lei1,2, LIU Yongtao1,2, FENG Rui1,2, ZHU Wei1,2
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 39492KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用直流和脉冲直流钨极惰性气体保护焊(Tungsten Inert Gas Welding,TIG焊) 电弧沉积工艺来制造960高强钢薄壁构件。通过对比分析两种沉积方法,系统研究了不同工艺因素对沉积热过程中熔滴过渡和熔池稳定性的影响,探讨了沉积与结合层微观组织和力学性能的演化规律,为脉冲TIG(Pulsed-TIG)技术的工程应用提供有益参考。结果表明,直流TIG-WAAM(Wire arc additive manufacturing)和脉冲直流TIG-WAAM(Pulsed-TIG -WAAM)工艺下,构件整体成形过程相对稳定,脉冲直流沉积构件的焊道高宽比相对较低,加入脉冲后沉积层变得更为扁平,有利于沉积过程中熔池保持稳定,提高成形精度。沉积层自下而上的微观组织分布较不均匀,底层为细小奥氏体晶粒,中层为粗大等轴晶,顶层为奥氏体组织。脉冲的引入有效改善了组织均匀性,回火马氏体组织的形成提高了材料的塑性和韧性。直流TIG-WAAM和脉冲直流TIG-WAAM熔滴过渡模式分别为大滴过渡和细滴过渡,过渡频率分别为5.24 Hz和9.17 Hz。脉冲条件下的细滴过渡模式更有利于保证整个沉积过程的热稳定性、构件成形精度和工艺稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陆万全
乔及森
王磊
刘永涛
冯睿
祝伟
关键词:  脉冲TIG增材制造  960高强钢  宏观和微观结构  熔滴过渡  力学性能    
Abstract: We made a 3D printing of 960 high-strength steel thin-walled components using direct current and pulsed current wire arc additive manufactu-ring and conducted the research on thermal process, microstructure and mechanical properties of thin-walled components during wire arc additive manufacturing of 960 high-strength steel, which provides useful reference for the engineering application of Pulsed-TIG(PTIG) technology. The results indicated that both the direct current deposition and the pulsed current one are really stable, and have reliable precision. The height to width ratio of pulse current deposition component is relatively low and the deposition layer becomes more flatter after pulse is added, which is beneficial to keep the molten pool stable during deposition and improve the forming accuracy. The microstructure distribution of the sedimentary layer from bottom to top is not uniform. The bottom layer is composed of fine austenite grains, the middle layer is coarse equiaxed grains, and the top layer is composed of austenite and partially tempered martensite. Through the introduction of pulse, the structure uniformity and temper martensite structure formation are effectively improved, and the plasticity and toughness of the material are improved. Direct current TIG-wire arc additive manufacturing(TIG-WAAM) and pulse current TIG-wire arc additive manufacturing(PTIG-WAAM)droplet transition modes were large droplet transition and fine droplet transition, respectively, and the transition frequencies were 5.24 Hz and 9.17 Hz, respectively. The high-frequency transition mode of droplets under pulse current is more beneficial to ensure the thermal stability, forming accuracy and process stability of the whole deposition process.
Key words:  pulsed TIG wire arc additive manufacturing    960 high-strength steel    macrostructure and microstructure    droplet transfer    mechanical property
出版日期:  2023-07-25      发布日期:  2023-07-24
ZTFLH:  TG457  
基金资助: 国家自然科学基金(52063017);有色金属先进加工与循环利用国家重点实验室联合资助项目(18LHPY007)
通讯作者:  *乔及森,兰州理工大学材料科学与工程学院教授、博士研究生导师。2007年12月毕业于兰州理工大学焊接工程系获得材料加工工程博士学位,同年加入兰州理工大学材料科学与工程学院工作至今,主要从事移动装置焊接结构轻量化设计与制造基础研究、金属材料塑形大变形力学行为研究。在国际和国内学术期刊发表相关研究论文60余篇,申请国家发明专利7项。qiaojisen@lut.cn   
作者简介:  陆万全,2019年6月于天津工业大学获得工学学士学位,现为兰州理工大学材料科学与工程学院硕士研究生。在乔及森教授指导下进行研究,目前主要研究领域为高强钢脉冲TIG电弧增材制造工艺及性能。
引用本文:    
陆万全, 乔及森, 王磊, 刘永涛, 冯睿, 祝伟. 960高强钢脉冲TIG电弧增材制造热过程及组织与力学性能研究[J]. 材料导报, 2023, 37(14): 21110135-7.
LU Wanquan, QIAO Jisen, WANG Lei, LIU Yongtao, FENG Rui, ZHU Wei. Study on Thermal Process, Microstructure and Mechanical Properties of Thin-walled Components During Pulsed TIG Wire Arc Additive Manufacturing of 960 High-strength Steel. Materials Reports, 2023, 37(14): 21110135-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110135  或          http://www.mater-rep.com/CN/Y2023/V37/I14/21110135
1 Bekker A, Verlinden J C. Journal of Cleaner Production, 2018, 177, 438.
2 Luo Y, Li J, Xu J, et al. Journal of Materials Processing Technology, 2018, 259, 353.
3 Yilmaz O, Ugla A A . Journal of Engineering Manufacture, 2016, 230(10), 1781.
4 Yi H, Qi L, Luo J, et al. International Journal of Machine Tools and Manufacture, 2018, 130, 1.
5 Gokhale P N, Kala P, Sharma V, et al. Journal of Mechanical Science and Technology, 2020, 34(2), 701.
6 Wang L, Xue J, Wang Q. Materials Science & Engineering A, 2019, 751, 183.
7 Zhao P K, Tang C, Pu Z Y, et al. Transactions of the China Weld Institution, 2020, 41(5), 65( in Chinese).
赵鹏康, 唐成, 蒲尊严, 等. 焊接学报, 2020, 41(5), 65.
8 Guo J, Zhou Y, Liu C, et al. Materials, 2016, 9(10), 823.
9 Katou M, Oh J, Miyamoto Y, et al. Materials & Design, 2007, 28(7), 2093.
10 Qi B J, Yang M X, Cong B Q, et al. The International Journal of Advanced Manufacturing Technology, 2013, 66(9-12), 1545.
11 Ghosh P K, Kumar R. Metallurgical and Materials Transactions A, 2015, 46(2), 831.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[3] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[4] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[5] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[6] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[7] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[8] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[9] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[10] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[11] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[12] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[13] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[14] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[15] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed