Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 297-301    
  无机非金属及其复合材料 |
室温交换偏置效应的研究进展
郭佳乐, 赵齐仲, 田方华, 张垠, 周超, 杨森
西安交通大学物理学院,西安 710049
Research Progress of Exchange Bias Effect at Room Temperature
GUO Jiale, ZHAO Qizhong, TIAN Fanghua, ZHANG Yin, ZHOU Chao, YANG Sen
School of Physics, Xi'an Jiaotong University,Xi'an 710049,China
下载:  全 文 ( PDF ) ( 4325KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 交换偏置效应是指材料在外加磁场或不加磁场冷却后,磁滞回线沿磁场轴发生偏移的现象。它已成为研究信息存储技术的重要理论基础,在诸如磁传感器、磁存储读头以及磁自旋阀等电子器件中有着不可或缺的作用。因此,近年来引起了研究者极大的关注和研究。交换偏置效应广泛存在于纳米核壳结构的颗粒,多层膜体系以及块状合金中。但是,目前研究的具有交换偏置效应的绝大多数材料体系都在低温下(T≤50 K)才可以出现交换偏置效应,从而在很大程度上限制了交换偏置效应在实际中的应用。经过多年的探索和研究,在部分薄膜体系、纳米核壳结构和近补偿的亚铁磁体系得到了室温交换偏置效应。本文将对近年来室温下的交换偏置效应研究进行详细的整理和总结,分析了现阶段室温交换偏置效应研究中存在的问题及面临的挑战,希望能为室温交换偏置效应体系的研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭佳乐
赵齐仲
田方华
张垠
周超
杨森
关键词:  交换偏置效应  室温  磁性薄膜  核壳结构  近补偿亚铁磁体系    
Abstract: The exchange bias effect refers to the phenomenon that the hysteresis loop of the material is shifted along the magnetic field axis after the material is cooled with or without the extra magnetic field. It has become an important theoretical basis for research on information storage technology, and plays an indispensable role in electronic devices such as electromagnetic sensors, magnetic read heads, and magnetic spin valves. Therefore, in recent years, researchers have attracted great attention and research. The exchange bias effect is widely present in nano-core@shell particles, multilayer film systems and bulk alloys.However, most of the exchange bias systems should be investigated at low temperature(T≤50 K),which limits the application of exchange bias effect. After years of exploration and research, the room temperature exchange bias effect has been obtained in some thin film systems, nano-core@shell particles, multilayer film systems and nearly-compensated ferrimagnetic systems. In this paper,the investigation of room temperature exchange bias effect in recent years is summarized in detail,and the existing problems and challenges are analyzed in the hope of providing references for the study of exchange bias systems at room temperature.
Key words:  exchange bias effect    room temperature    magnetic films    core-shell structure    nearly- compensated ferrimagnetic systems
                    发布日期:  2021-07-16
ZTFLH:  O482.51  
基金资助: 国家自然科学基金青年基金资助项目(51801145);中国博士后基金(2018M643630)
通讯作者:  tfh2017@xjtu.edu.cn   
作者简介:  郭佳乐,2020年6月毕业于西安交通大学,获得理学学士学位。现为西安交通大学物理学院硕士研究生。目前主要研究领域为纳米薄膜方向。田方华,毕业于西安交通大学理学院材料科学与工程专业,获工学博士,助理教授。主要从事新能源材料、磁性材料马氏体相变及物理性能的研究工作,在物理和化学手段合成和分析材料方面有着坚实的理论基础和丰富的实验经验。主持国家自然科学基金青年基金一项,参与多项国家自然科学基金的研究工作,已在Advance Science, Applied Physics Letters, Composites Science and Technology, Scientific Reports, Electrochimica Acta等国际著名学术期刊上发表20 余篇,被引用300 余次。杨森,西安交通大学理学院,教授,博士生导师。2010年入选教育部“新世纪优秀人才支持计划”,2012年获国家首届优秀青年科学基金资助,2014年获陕西省青年科技奖,2015年入选西安交通大学“青年拔尖人才”,中国电子学会应用磁学分会高级会员,陕西省电子学会应用磁学分会理事。长期从事磁性合金与薄膜以及纳米磁性材料等方面的研究。先后在Nature Materials, Nature Nanotechnology, Physics Review Letters, Journal of the American Chemical Society等国际知名期刊上发表文章160余篇,被引用1 700余次。
引用本文:    
郭佳乐, 赵齐仲, 田方华, 张垠, 周超, 杨森. 室温交换偏置效应的研究进展[J]. 材料导报, 2021, 35(Z1): 297-301.
GUO Jiale, ZHAO Qizhong, TIAN Fanghua, ZHANG Yin, ZHOU Chao, YANG Sen. Research Progress of Exchange Bias Effect at Room Temperature. Materials Reports, 2021, 35(Z1): 297-301.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/297
1 Meiklejohn W H, Bean C P, Physical Review, 1956, 102(5), 1413.
2 周圣强, 刘先松. 阜阳师范学院学报, 2010,27 (4), 46.
3 董思宁, 黄晓桦, 李晓光. 中国材料进展, 2011, 30 (1), 46.
4 Manna P K, Yusuf S M.Physics Report, 2014, 535,61.
5 Nogués J, Schuller I K. Journal of Magnetism and Magnetic Materials, 1999, 192(2), 203.
6 Skumrye V, Stoyanov S, Zhang Y,et al. Nature, 2003, 423, 850.
7 Wang B M, Liu Y, Ren P, et al. Physical Review Letters, 2011, 106 (7), 077203.
8 Binns C, Qureshi M T, Peddis D,et al. Nano Letters, 2013, 13 (7), 3334.
9 Mitra A, Mahapatra A S, Mallick A,et al. Journal of Magnetism and Magnetic Materials, 2017, 424, 388.
10 王理想, 吴子鸣, 吴翌彬, 等.常熟理工学院学报, 2019, 33 (2) ,1.
11 Sarka S, Mondal A, Giri N,et al. Physical Chemistry Chemical Physics, 2019, 21, 260.
12 Mao H J, Song C, Cui B, et al. Journal of Applied Physics, 2013, 114 (4), 043904.
13 Borisov P, Hochstrat A, Chen X, et al. Physical Review Letters, 2005, 94 (11), 117203.
14 He X, Wang Y, Wu N, et al. Nature Materials, 2010, 9, 579.
15 Wang C H, Zhou L, Fu Q Y, et al. Journal of Magnetism and Magnetic Materials, 2018, 449, 372.
16 Béa H, Bibes M, Cherifi S, et al. Applied Physics Letters, 2006, 89 (24), 242114.
17 Sterwerf C, Meinert M, Arenholz E, et al. IEEE Transactions on Magne-tics, 2016, 52 (7), 4800204.
18 Martin L W, Chu Y H, Zhan Q, et al. Applied Physics Letters, 2007, 91 (17), 172513.
19 Dho J, Qi X D, Kim H, et al. Advanced Materials, 2006, 18, 1445.
20 Wei L J, Hu Z Z, Du G X, et al. Advanced Materials, 2018,30(30), 1801885.
21 Choi E M, Weal E, Bi Z X, et al. Applied Physics Letters, 2013, 102 (1), 012905.
22 Bansal R, Chowdhury N, Muduli P K. Applied Physics Letters, 2018, 112 (26), 262403.
23 Migliorini A, Kuerbanjiang B, Huminiuc T, et al. Nature Materials, 2018, 17, 28.
24 Meinert M, Büker B, Graulich D, et al. Physical Review B. 2015, 92 (14), 144408.
25 Zilske P, Graulich D, Dunz M, et al. Applied Physics Letters, 2017, 110 (19), 192402.
26 Gao H X, Harumoto T, Luo W K, et al. Journal of Magnetism and Magnetic Materials, 2019, 473, 490.
27 Basith M A, Khan F A, Ahmmad B, et al. Journal of Applied Physics, 2015, 118 (2), 023901.
28 Han Y L, Liu W F, Xu X L, et al. Journal of the American Ceramic Society, 2016, 99 (11), 3616.
29 Xu Y, Gao Y F, Xing H J, et al. Ceramics International, 2018, 44 (14), 17459.
30 Zhang C, Wang S Y, Liu W F,et al. Journal of Nanoparticle Research, 2017, 19, 182.
31 Zhu C M, Wang L G, Liu F C,et al. Ceramics International, 2018, 45 (8), 9878.
32 Mohanty P, Marik S, Singh D, et al. Applied Physics Letters, 2017, 111 (2), 022402.
33 Prajapat M, Marika S, Kumar K S,et al. Journal of Magnetism and Magnetic Materials, 2019, 478, 247.
34 Qian J F, Nayak A K, Kreiner G,et al. Journal of Physics D, Applied Physics, 2014, 47, 305001.
35 Feng H L, Adler P, Reehuis M,et al. Chemistry of Materials, 2017, 29, 886.
36 Wang X X, Cheng X Y, Gao S, et al. Journal of Magnetism and Magne-tic Materials, 2016, 399, 170.
[1] 李冬梅, 左定荣, 余鹏. 近室温磁制冷合金材料的研究进展及发展前景[J]. 材料导报, 2021, 35(11): 11119-11125.
[2] 谢登敏, 钱春香, 张霄. 微生物矿化沉积技术强化核壳结构再生粗骨料[J]. 材料导报, 2021, 35(1): 1030-1035.
[3] 杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
[4] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[5] 翟乐, 吉海峰, 姚艳梅, 瞿雄伟. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.
[6] 杨亚文, 王娜, 任俊芳, 高贵, 陈生圣, 王宏刚. 核壳纳米复合润滑材料研究进展[J]. 材料导报, 2019, 33(19): 3242-3250.
[7] 冯爱玲, 徐榕, 王彦妮, 张亚妮, 林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
[8] 孙培川, 魏清茂, 张宇振, 杨喜昆, 王剑华. 核壳型铂基燃料电池催化剂制备方法与微结构控制综述[J]. 《材料导报》期刊社, 2018, 32(9): 1427-1434.
[9] 董虹星, 刘秋平, 贺跃辉. BiVO4基纳米异质结光催化材料的研究进展[J]. 材料导报, 2018, 32(19): 3358-3367.
[10] 李延安, 董海泉, 徐丽娜, 李蛟. 硅丙乳液包覆Mg(OH)2核壳结构纳米粒子的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(18): 97-101.
[11] 蔡超, 陈亚男, 傅凯林, 潘牧. 质子交换膜燃料电池中Pt/C及Pt合金/C催化剂的衰退机制研究综述[J]. 《材料导报》期刊社, 2017, 31(17): 20-26.
[12] 唐昌平, 李国栋, 刘文辉, 陈宇强, 刘筱, 李方伟. 析出相对Mg-Gd-Y-Nd-Zr合金室温压缩行为的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 103-106.
[13] 李玉超, 付雪连, 战艳虎, 谢倩, 葛祥才, 陶绪泉, 廖成竹, 卢周广. 高介电常数、低介电损耗聚合物复合电介质材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 18-23.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed