Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6120-6125    https://doi.org/10.11896/cldb.19110214
  金属与金属基复合材料 |
高压扭转制备的Mg-Sm-Ca合金组织演变及时效硬化行为
刘晓欢, 李彦生, 满意, 王金辉, 徐瑞
燕山大学材料科学与工程学院,亚稳材料制备技术与科学国家重点实验室,河北省金属产品工艺与性能综合优化实验室,秦皇岛 066004
Microstructure Evolution and Age-hardening Behavior of Mg-Sm-Ca Alloy Processed by High Pressure Torsion
LIU Xiaohuan, LI Yansheng, MAN Yi, WANG Jinhui, XU Rui
State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Optimizing Metal Product Technology and Performance, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
下载:  全 文 ( PDF ) ( 7991KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 结合高压扭转(HPT)和热处理工艺研究了Mg-Sm-Ca合金的组织和力学性能的变化。光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、显微硬度计以及X射线衍射仪(XRD)测试的结果表明,高压扭转后成功制备了纳米晶,晶粒尺寸由209 μm细化至108 nm,后续时效过程中在1.5 h时达到峰值硬度134HV,约为铸态样品的2倍,与一般冷变形合金不同,组织仍为纳米晶且具有一定的抗回复性和热稳定性,同时引入了大量纳米级析出物。HPT处理后的Mg-Sm-Ca合金具有较强的(0002)基面织构,时效处理对基面滑移有促进作用,时效时间延长会使合金织构变弱。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晓欢
李彦生
满意
王金辉
徐瑞
关键词:  Mg-Sm-Ca合金  高压扭转(HPT) 时效  织构    
Abstract: The microstructure and mechanical properties of Mg-Sm-Ca alloy were investigated by combining high pressure torsion (HPT) and aging treatment. Optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), microhardness test, and X-ray diffraction (XRD) analysis results show that nanocrystalline Mg-Sm-Ca alloy were successfully produced after HPT, and the grain size refined from 209 μm to 108 nm. The peak hardness reached 134HV aged at 175 ℃ for 1.5 h, which was about twice the as-cast sample. The structure is still nanocrystalline and has certain anti-recovery and high thermal stability, and a large amount of nano-scale precipitates is introduced, which is different from conventional cold deformed alloys. The HPT-treated Mg-Sm-Ca alloy exhibits a strong (0002) basal texture, and the aging treatment promotes basal slip. the texture of the alloy becomes weaker after aging time is prolonged.
Key words:  Mg-Sm-Ca alloy    high pressure torsion (HPT)    aging    texture
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  TG146.4  
基金资助: 国家自然科学基金项目(51675092)
通讯作者:  xurui@ysu.edu.cn   
作者简介:  刘晓欢,1995年生,燕山大学材料工程专业,硕士研究生,主要从事镁合金大变形与时效的研究。
徐瑞,博士、教授、硕士研究生导师,任职于燕山大学,主要从事金属凝固技术与理论的研究,发表论文50余篇,出版3部著作。
引用本文:    
刘晓欢, 李彦生, 满意, 王金辉, 徐瑞. 高压扭转制备的Mg-Sm-Ca合金组织演变及时效硬化行为[J]. 材料导报, 2021, 35(6): 6120-6125.
LIU Xiaohuan, LI Yansheng, MAN Yi, WANG Jinhui, XU Rui. Microstructure Evolution and Age-hardening Behavior of Mg-Sm-Ca Alloy Processed by High Pressure Torsion. Materials Reports, 2021, 35(6): 6120-6125.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110214  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6120
1 Nie J F, Muddle B C. Acta Materialia,2000,48(8),1691.
2 Sun W T, Qiao X G, Zheng M Y, et al. Materials Science and Enginee-ring: A,2018,728,115.
3 Sun W T, Qiao X G, Zheng M Y, et al. Scripta Materialia,2018,155,21.
4 Tekumalla S, Seetharaman S, Almajid A, et al. Metals,2014,5(1),1.
5 Sun W T, Qiao X G, Zheng M Y, et al. Acta Materialia,2018,151,260.
6 Liu D X, Pang X, Li D l, et al. Advanced Engineering Materials,DOI:10.1002/adem.201700723.
7 Zhang Z Y.Study on the microstructure, mechanical properties and precipitation phase transformation of Mg (-Gd)-Sm-Zr alloy. Ph.D. Thesis, Shanghai Jiao Tong University, China,2011(in Chinese).
章桢彦.Mg(-Gd)-Sm-Zr合金的微观组织、力学性能和析出相变研究.博士学位论文,上海交通大学,2009.
8 Chai Y S, Gao Z G, Cai K L, et al. Rare Metal Materials and Enginee-ring,2016,45(2),287.
9 Luo X P, Fang D Q, Li Q S, et al. Journal of Rare Earths,2016,34(11),1134.
10 Wang Y B, Liao X. Z, Zhao Y H, et al. Materials Science and Enginee-ring A,2010,527(18-19),4959.
11 Zhang Y D, Jin S B, Patrick W. Trimby, et al. Acta Materialia,2019,162,19.
12 Li Y S, Qu C, Wang J H, et al. Journal of Alloys and Compounds, DOI:10.1016/j.jallcom.2019.152123.
13 Gao Y B, Ding Y T, Chen J J, et al. The Chinese Journal of Nonferrous Metals,2019,29(1),44(in Chinese).
高钰璧,丁雨田,陈建军,等.中国有色金属学报,2019,29(1),44.
14 Wang Z B, Liu M P, Jiang K, et al. Materials Reports,2019,33(2),321(in Chinese).
王子博,刘满平,姜奎,等.材料导报,2019,33(2),321.
15 Ye J, Lin X P, Dong Y, et al. Rare Metal Materials and Engineering,2018,47(1),39(in Chinese).
叶杰,林小娉,董允,等.稀有金属材料与工程,2018,47(1),39.
16 Liu Q. Acta Metallurgica Sinica,2010,46(11),1458(in Chinese).
刘庆.金属学报,2010,46(11),1458.
17 Qiao X G, Zhao Y W, Gan W M, et al. Materials Science and Enginee-ring A,2014,619,95.
18 Cai Y C. Effect of high Ca content on microstructure and mechanical pro-perties of Mg-Zn-Nd alloy. Ph.D. Thesis, Taiyuan University of Science and Technology, China,2016(in Chinese).
蔡彦岑.高Ca含量对Mg-Zn-Nd合金组织结构和力学性能的影响.博士学位论文,太原科技大学,2016.
19 Jakob Schiøtz, Di F D Tolla, Karsten W Jacobsen, et al. Nature,1998,391(6667),561.
20 Sun W T, Qiao X G, Zheng M Y, et al. Materials Science and Enginee-ring: A,2018,738,238.
21 Niu M C, Zhou G, Wang W, et al. Acta Materialia,2019,179,296.
22 Fang Z W, Xiao Z Y, Zhang D X, et al. The Chinese Journal of Nonferrous Metals,2018,28(2),223(in Chinese).
方正午,肖振宇,张笃秀,等.中国有色金属学报,2018,28(2),223.
23 Zhilyaev A P, Langdon T G. Progress in Materials Science,2008,53(6),893.
24 Huang X, Hansen N, Tsuji N. Science,2006,312(5771),249.
25 Wang G. Research on the development of microstructure, texture and mechanical behavior of magnesium alloys during the deformation. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China,2012(in Chinese).
万刚.镁合金变形组织、织构的演变规律及其力学行为研究.博士学位论文,南京航空航天大学,2012.
26 Sun W T. Microstructure and mechanical properties of Mg-Gd-Y-Zn-Zr alloy processed by pressure torsion. Ph.D. Thesis, Harbin Institute of Technology, China,2018(in Chinese).
孙婉婷.高压扭转变形Mg-Gd-Y-Zn-Zr合金的显微组织和力学性能.博士学位论文,哈尔滨工业大学,2018.
27 Hanna A, Azzeddine H, Lachhab R, et al. Journal of Alloys and Compounds,2019,778,61.
28 Kocich R, Lenka Kunická, Petr Král, et al. Materials and Design,2015,90,1092.
29 Figueiredo R B, Langdon T G. Materials Science and Engineering A,2011,528(13),4500.
30 Huang Y, Figueiredo R B, Baudin T, et al. Materials Research,2013,16(3),577.
31 Yang H P, Wang Y M, Li Z Y. Rare Metal Materials and Engineering,2017,46(9),2655(in Chinese).
杨换平,王耀勉,李治阳.稀有金属材料与工程,2017,46(9),2655.
32 Bourezg Y I, Azzeddine H, Baudin T, et al. Materials Science and Engineering A,2018,724,477.
33 Zhang G S, Meng Y Z, Yan F F, et al. Journal of Alloys and Compounds, DOI:10.1016/j.jallcom.2019.152452.
34 Li X, Jiao F, Al-Samman T, et al. Scripta Materialia,2012,66(3-4),159.
[1] 王昕宇, 徐春, 黎雨, 庞灵欢, 王斌君, 陈建斌. 电脉冲拉伸下5052铝合金的变形行为及微观组织和织构演变[J]. 材料导报, 2020, 34(24): 24097-24103.
[2] 钟兵, 邢志国, 王海斗, 吕晓仁, 黄艳斐, 郭伟玲, 张仲. 织构化表面摩擦学性能的研究进展[J]. 材料导报, 2020, 34(23): 23171-23178.
[3] 赵磊杰, 马立峰, 韩廷状, 范沁红. 变形镁合金轧制成形研究进展[J]. 材料导报, 2020, 34(21): 21135-21145.
[4] 王小鹏, 李晓延, 吴奇, 徐洲. 织构对6061-T6铝合金X射线应力测试精度的影响机理[J]. 材料导报, 2020, 34(20): 20081-20085.
[5] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[6] 刘晓燕, 张琪, 高飞龙, 杨西荣, 罗雷, 柳奎君. 复合变形制备超细晶工业纯钛的研究进展[J]. 材料导报, 2020, 34(19): 19111-19116.
[7] 秦芳诚, 齐会萍, 李永堂, 武永红, 亓海全, 刘崇宇. 环形零件短流程铸辗复合成形技术研究进展[J]. 材料导报, 2020, 34(19): 19152-19165.
[8] 杨西荣, 郝凤凤, 罗雷, 刘晓燕, 马炜杰, 王立元. 大角度ECAP变形模具制备纯钛的变形织构演化模拟[J]. 材料导报, 2020, 34(16): 16077-16082.
[9] 石晓辉, 曹祖涵, 张敏, 郭瑞鹏, 乔珺威. 基于位错密度分析的Ti-8Al-1Mo-1V钛合金片层组织在热轧及退火过程中的演变机制[J]. 材料导报, 2020, 34(12): 12101-12104.
[10] 肖乾坤, 朱政强, 李铭锋. 紫铜超声波焊接微观结构演变及再结晶研究[J]. 材料导报, 2020, 34(10): 10157-10161.
[11] 郝时嘉, 陆政, 李国爱, 于娟. 高性能铝锂合金关键力学性能各向异性的影响因素及控制措施[J]. 材料导报, 2019, 33(Z2): 389-393.
[12] 陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
[13] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[14] 郑国明, 李磊, 毛小南, 蔡建华, 吴聪, 雷磊. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响[J]. 材料导报, 2019, 33(17): 2910-2917.
[15] 俞良良, 张郑, 王快社, 王文, 贾少伟. 搅拌摩擦加工对AZ31镁合金微观组织及力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1289-1293.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed