Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 13-18    
  无机非金属及其复合材料 |
电荷传输层和热退火对钙钛矿薄膜电学性能的影响
左文韬, 樊正方, 刘国强, 刘江, 廖成
中国工程物理研究院成都科学技术发展中心,成都 610000
Effects of the Charge Transport Layers and Thermal Annealing on the ElectricalProperties of Perovskite Films
ZUO Wentao, FAN Zhengfang, LIU Guoqiang, LIU Jiang, LIAO Cheng
Chengdu Science and Technology Development Center, China Academy of Engineering Physics, Chengdu 610000, China
下载:  全 文 ( PDF ) ( 6033KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机-无机杂化钙钛矿(PVK)薄膜材料因具有较高的消光系数、较高的载流子迁移率、较低的激子束缚能、可控的禁带宽度等优势,近年来成为光伏研究的热点。钙钛矿太阳能电池器件结构简单、制备工艺高效、材料成本低廉,有望在未来取代传统硅电池。电荷传输层是钙钛矿太阳能电池的重要组成部分,本工作详细研究了不同底层电荷传输层对钙钛矿薄膜的表面电势、载流子复合寿命及电池性能的影响。扫描开尔文探针显微镜(SKPM)结果表明,底层电荷传输材料的导电类型会显著改变钙钛矿薄膜的表面电势,这一结果证实了钙钛矿薄膜的弱掺杂属性。当钙钛矿薄膜沉积在电子传输层衬底上时,薄膜表面电势高、功函数小,可能呈n型;反之,当薄膜沉积在空穴传输层衬底上时,薄膜表面电势低、功函数大,呈p型。进一步分析基于不同电荷传输层的钙钛矿薄膜的性能,发现表面光电压与电荷传输层性能之间存在一定联系。同时,进一步研究了钙钛矿薄膜的热稳定性与表面光电压之间的联系,发现表面光电压的变化能在一定程度上反映薄膜的热稳定性,并得出溴离子(Br-)、甲基氯化胺(MACl)和铯离子(Cs+)对钙钛矿薄膜的热稳定性具有一定提升作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
左文韬
樊正方
刘国强
刘江
廖成
关键词:  电荷传输层  钙钛矿  表面电势  表面光电压  热稳定性    
Abstract: Organic-inorganic hybrid perovskite (PVK) solar cells have become a promising candidate in the photovoltaic field due to their high extinction coefficient, high carrier mobility, low exciton binding energy and tunable band gap, etc. Perovskite solar cell devices have the advantages of simple structure, efficient fabrication process and low material cost, which are expected to replace traditional silicon cells in the future. The charge transport layer is a key part of perovskite solar cells. In this work, the effects of different underlying charge transport layers on the surface potential, carrier recombination and photovoltaic performance of perovskite films were investigated in detail. Scanning Kelvin probe microscopy (SKPM) results show that the conductivity type of the underlying charge transport materials an obviously change the surface potential of the perovskite films. This result confirms that perovskite film is a weak doped semiconductor films. When deposited on electron transport layer coated substrate, the perovskite film display a high surface potential and small work function, and exhibits n-type conductivity. On the contrary, when deposited on hole transport layer coated substrate, the film has a low surface potential and large work function. Based on the analysis of the properties of perovskite films on different charge transfer layers, an obvious relationship between surface photovoltage and the performance of charge transport layer can be ascertained. Moreover, we researched the correlation between the thermal stability of the perovskite film and their surface photovol-tage, and concluded that the change of surface photovoltage could partly reflect the thermal stability of thin film. It is concluded that bromide ion (Br-), methylammonium chloride (MACl) and cesium ions (Cs+) could improve thermal stability for perovskite films.
Key words:  charge transport layer    perovskite    surface photovoltage    thermal stability
                    发布日期:  2020-07-01
ZTFLH:  O469  
基金资助: 国家自然科学基金(11704425)
作者简介:  左文韬,中国工程物理研究院硕士在读研究生。主要研究方向为钙钛矿薄膜与器件。2013年9月至2017年6月,在兰州大学获得物理学学士学位,2017年9月起于中国工程物理研究院凝聚态物理专业学习;刘江,清华大学工学博士,现为中国工程物理研究院副研究员。从事薄膜光伏研究十年。博士期间主要开展CIGS薄膜的产业化应用技术研究,近年来主要从事钙钛矿薄膜的制备与光伏应用、新型光电器件与物理等研究工作,目前已发表SCI论文20余篇。
引用本文:    
左文韬, 樊正方, 刘国强, 刘江, 廖成. 电荷传输层和热退火对钙钛矿薄膜电学性能的影响[J]. 材料导报, 2020, 34(Z1): 13-18.
ZUO Wentao, FAN Zhengfang, LIU Guoqiang, LIU Jiang, LIAO Cheng. Effects of the Charge Transport Layers and Thermal Annealing on the ElectricalProperties of Perovskite Films. Materials Reports, 2020, 34(Z1): 13-18.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/13
1 Mahshid Ahmadi, Ting Wu, Bin Hu. Advanced Materials,2017,29,1605242.
2 Brandon R Sutherland, Edward H Sargent. Nature Photonics,2016,10,295.
3 Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, et al. Journal of the American Chemical Society,2009,131,6050.
4 Michael M Lee, Joël Teuscher, Tsutomu Miyasaka, et al. Science,2012,338,643.
5 Jeong Hyeok Im, Chang Ryul Lee, Jin Wook Lee, et al. Nanoscale,2011,3,4088.
6 Tadas Malinauskas, Michael Saliba, Taisuke Matsui, et al. Energy & Environmental Science,2016,9,1681.
7 Hefei Liu, Ziru Huang, Shiyuan Wei, et al. Nanoscale,2016,8,6209.
8 Nam Joong Jeon, Jun Hong Noh, Young Chan Kim, et al. Nature mate-rials,2014,13,897.
9 Dongmei Li, Jiangjian Shi, Yuzhuan Xu, et al. National Science Review,2018,5,559.
10 Edri Eran, Kirmayer Saar, Mukhopadhyay Sabyasachi, et al. Nature Communications,2014,5,3461.
11 Michael Saliba, Taisuke Matsui, Konrad Domanski, et al. Science,2016,354,206.
12 Jin Hyuck Heo, Sang Hyuk Im, Jun Hong Noh, et al. Nature photonics,2013,7,486.
13 Julian Burschka, Norman Pellet, Soo Jin Moon, et al. Nature,2013,499,316.
14 Michael Saliba, Simonetta Orlandi, Taisuke Matsui, et al. Nature Energy,2016,1,1.
15 Yang D, Yang R, Wang K, et al. Nature Communications,2018,9,3239.
16 Guo Y, Li X, Kang L L, et al. RSC Advances,2016,6,62522.
17 Muhammad Aamir, Tham Adhikari, Muhammad Sher, et al. New Journal of Chemistry,2018,42,14104.
18 Kangrong Yan, Jiehuan Chen, Huanxin Ju, et al. Journal of Materials Chemistry A,2018,6,15495.
19 Jingbi You, Lei Meng, Tze Bin Song, et al. Nature Nanotechnology,2016,11,75.
20 Jong Hoon Park, Jangwon Seo, Sangman Park, et al. Advanced Mate-rials,2015,27,4013.
21 Cheng Bi, Qi Wang, Yuchuan Shao, et al. Nature Communications,2015,6,1.
22 Norman Pellet, Peng Gao, Giuliano Gregori, et al. Angewandte Chemie International Edition,2014,53,3151.
23 Jingbi You, Yang Yang, Ziruo Hong, et al. Applied Physics Letters,2014,105,183902.
24 Michel Havaux, Geneviève Guedeney, He Qingfang, et al. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2003,1557,21.
25 Lichen Zhao, Deying Luo, Jiang Wu, et al. Advanced Functional Mate-rials,2016,26,3508.
26 Peng Qin, Soichiro Tanaka, Seigo Ito, et al. Nature Communications,2014,5,1.
27 Jeffrey A C, Raymond C M F, Prashant V K. Journal of the American Chemical Society,2014,136,758.
28 Lin Fan, Yuelong Li, Xin Yao, et al. ACS Applied Energy Materials,2018,1,1575.
29 Ouyang Dan, Xiao Junyan, Ye Fei, et al. Advanced Energy Materials,2018,8,1702722.
30 Hairen Tan, Ankit Jain, Oleksandr Voznyy, et al. Science,2017,355,722.
31 Ouyang Dan, Huang Zhanfeng, Wallace C H C. Advanced Functional Materials,2019,29,1804660.
32 Sawanta S Mali, Jyoti V Patil, Hyungjin Kim, et al. Nanoscale,2018,10,8275.
33 Xiao C, Wang C, Ke W, et al. ACS Applied Materials & Interfaces,2017,9,38373.
34 Wang Yao, Duan Chenghao, Li Jiangsheng, et al. ACS Applied Materials & Interfaces,2018,10,20128.
35 Guang Yang, Cong Chen, Fang Yao, et al. Advanced Materials,2018,30,1706023.
36 Chun Huang, Peng Lin, Nianqing Fu, et al. Journal of Materials Chemistry A,2018,6,22086.
37 Su Tongyu, Zheng Yuanhui, Ma Zongwei, et al. Chemistry Select,2018,3,363.
38 Chen Hao, Liu Detao, Wang Yafei, et al. Nanoscale Research Letters,2017,12,1.
39 Gong X, Sun Q, Liu S, et al. Nano Letters,2018,18,3969.
40 Li Fumin, Xu Mengqi, Ma Xingping, et al. Nanoscale Research Letters,2018,13,216.
41 Liu Zhiyong, Sun Bo, Liu Xingyue, et al. Journal of Materials Chemistry A,2018,6,7409.
42 Nitu Kumari, Jignasa V G, Sanjaykumar R P. Materials Science in Semiconductor Processing,2018,75,149.
43 Yang Dong, Yang Ruixia, Wang Kai, et al. Nature Communications,2018,9,1.
44 Molang Cai, Nobuyuki Ishida, Xing Li, et al. Joule,2018,2,296.
45 Xiao Chuanxiao, Jiang Chunsheng, Ke Weijun, et al. Nanometer-scale electrical potential profiling across perovskite solar cells, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), IEEE,2016,pp.1197.
46 Jiang Chunsheng, Yang Mengjin, Zhou Yuanyuan, et al. Nature Communications,2015,6,1.
47 Yun J S, Baillie A H, Huang S J, et al. The Journal of Physical Chemistry Letters,2015,6,875.
48 Li Jiangjun, Ma Jingyuan, Ge Qianqing, et al. ACS Applied Materials & Interfaces,2015,7,28518.
49 Gordon A MacDonald, Mengjin Yang, Samuel Berweger, et al. Energy & Environmental Science,2016,9,3642.
50 Shao Yuchuan, Fang Yanjun, Li Tao, et al. Energy & Environmental Science,2016,9,1752.
51 Jarvist M F, Aron W. Accounts of Chemical Research,2016,49,528.
52 Michael L A, Sun Y Y, Zeng H, et al. Journal of the American Chemical Society,2014,136,14570.
53 Yu Hui, Lu Haipeng, Xie Fangyan, et al. Advanced Functional Mate-rials,2016,26,1411.
54 Christian Muller, Tobias Glaser, Marcel Plogmeyer, et al. Chemistry of Materials,2015,27,7835.
55 Huang J B, Tan S Q, Peter D. Lund, et al. Energy & Environmental Science,2017,10,2284.
56 Song Zhaoning, Antonio Abate, Suneth C Watthage, et al. Advanced Energy Materials,2016,6,1600846.
57 Ravi K M, Sigalit A, Li B L, et al. The Journal of Physical Chemistry Letters,2015,6,326.
58 Bertrand Philippe, Byung Wook Park, Rebecka Lindblad, et al. Chemistry of Materials,2015,27,1720.
59 Nicholas Aristidou, Christopher Eames, Irene Sanchez-Molina, et al. Nature Communications,2017,8,1.
60 Natalia Yantara, Fang Yanan, Chen Shi, et al. Chemistry of Materials,2015,27,2309.
61 Wei Lin Leong, ZiEn Ooi, Dharani Sabba, et al. Advanced Materials,2016,28,2439.
62 Nakita K N, Antonio A, Samuel D S, et al. ACS Nano,2014,8,9815.
[1] 董丽卡, 丁明乐, 庄志山, 夏广波, 邓倩囡, 邱琳琳, 杜平凡. 柔性及纺织基钙钛矿太阳能电池的研究进展[J]. 材料导报, 2020, 34(7): 7053-7060.
[2] 林佩俭, 苗鹤, 王洲航, 陈斌, 武旭扬, 袁金良. 固体氧化物燃料电池(SOFC)钛基钙钛矿阳极的研究进展[J]. 材料导报, 2020, 34(5): 5032-5038.
[3] 安世崇,黄茜,陈沛润,张力,赵颖,张晓丹. 半透明钙钛矿及叠层太阳电池中的透明电极研究综述[J]. 材料导报, 2020, 34(3): 3069-3079.
[4] 李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
[5] 王磊, 吴天昊, 崔丹钰, 杨旭东. 甲胺(MA)基钙钛矿太阳电池光诱导缺陷机理及稳定性提高[J]. 材料导报, 2020, 34(2): 2001-2004.
[6] 狄淑贤, 赖泳爵, 邱武, 林乃波, 詹达. 基于简单液相法对单层二硒化钨表面电荷掺杂的研究[J]. 材料导报, 2020, 34(12): 12025-12029.
[7] 韩瑞路, 阎红娟. Ti-Si-N纳米多层膜的研究进展[J]. 材料导报, 2019, 33(Z2): 169-174.
[8] 肖长江. 钙钛矿铁电体在超高压下的铁电重现[J]. 材料导报, 2019, 33(7): 1163-1168.
[9] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[10] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[11] 王博, 朱孝钦, 胡劲, 常静华, 陈洋, 史杰. 利用纳米石墨强化正癸酸-十四醇复合相变材料的导热性能[J]. 材料导报, 2019, 33(22): 3815-3819.
[12] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[13] 王策, 马爱斌, 刘欢, 黄河, 孙甲鹏, 杨振权, 江静华. LPSO相增强镁稀土合金耐热性能研究进展[J]. 材料导报, 2019, 33(19): 3298-3305.
[14] 李华鑫, 陈俊勇, 乐弦, 向军辉. Al2O3-SiO2复合气凝胶的制备与表征[J]. 材料导报, 2019, 33(18): 3170-3174.
[15] 于秀玲, 梁雪梅, 李雪. 掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能[J]. 材料导报, 2019, 33(14): 2305-2310.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed