Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22050211-7    https://doi.org/10.11896/cldb.22050211
  金属与金属基复合材料 |
晶粒组织对Al-Zn-Mg合金力学性能和腐蚀性能的影响
王鹏宇1, 叶凌英1,2,*, 柯彬1, 胡恬娇1, 董宇1, 刘胜胆1,2
1 中南大学材料科学与工程学院,长沙 410083
2 中南大学教育部有色金属材料和工程重点实验室,长沙 410083
Effect of Grain Structure on Mechanical and Corrosion Properties of Al-Zn-Mg Alloy
WANG Pengyu1, YE Lingying1,2,*, KE Bin1, HU Tianjiao1, DONG Yu1, LIU Shengdan1,2
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China
2 Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 30974KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以分别具有再结晶和纤维晶粒组织的两种Al-Zn-Mg合金为研究对象,通过室温拉伸、剥落腐蚀、慢应变速率拉伸、四点弯曲试验,结合金相显微镜(OM)、透射电镜(TEM)、扫描电镜(SEM)、电子背散射衍射(EBSD)观察研究了晶粒组织对合金力学性能和腐蚀性能的影响。结果表明:纤维组织合金相比于再结晶组织合金屈服强度提高24.7 MPa,抗拉强度提高56 MPa;纤维组织合金表现出更优的抗应力腐蚀性能,其在慢应变速率拉伸试验中的抗拉强度以及伸长率的损失率分别比再结晶组织合金降低了65.2%和80.3%,应力腐蚀指数降低了75.5%,在四点弯曲试验过程中发生断裂的时间是再结晶组织合金的57倍;纤维组织合金的剥落腐蚀性能低于再结晶组织合金,其最大腐蚀深度增加了160.4%。纤维组织合金的力学性能的提升主要来自细晶强化作用,抗应力腐蚀性能的提升主要源于其较低的再结晶分数和较低的大角度晶界占比。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王鹏宇
叶凌英
柯彬
胡恬娇
董宇
刘胜胆
关键词:  Al-Zn-Mg  晶粒组织  力学性能  腐蚀性能    
Abstract: Taking Al-Zn-Mg alloys with two different grain structures, recrystallized and fibrous as the research object, through room temperature tensile, exfoliation corrosion, slow strain rate tensile, four-point bending tests, the effects of grain structure on the mechanical properties and corrosion properties of the alloy were investigated by OM, TEM, SEM and EBSD. The results showed that:compared with the recrystallized structure alloy, the yield strength of the fiber-structured alloy was increased by 24.7 MPa and the tensile strength was increased by 56 MPa, the tensile strength and elongation loss rate in the slow strain rate tensile test were 65.2% and 80.3% lower than those of the recrystallized alloy, and the stress corrosion index was reduced by 75.5%, the time to fracture during the four-point bending test was 57 times longer than that of recrystallized alloys, compared with the recrystallized structure alloy, the maximum corrosion depth of exfoliation corrosion of the fiber structure alloy was increased by 160.4%. The improvement of the mechanical properties of the alloy with fibrous structure was mainly due to the grain refinement strengthening effect, and the improvement of the stress corrosion resistance was mainly due to its lower recrystallization fraction and lower proportion of high-angle grain boundaries.
Key words:  Al-Zn-Mg    grain structure    mechanical property    corrosion property
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TG146.2  
基金资助: 河南省紧固连接技术重点实验室项目(JGLJ2103);国家重点研发项目(2016YFB0300901)
通讯作者:  *叶凌英,中南大学教授、博士研究生导师。中国机械工程学会塑性工程分会超塑性论坛学术学术委员会委员,河南省紧固连接技术重点实验室学术委员会委员。主要从事高性能铝合金组织与性能调控、晶粒细化、高温变形行为及机理方面研究。主持国家自然科学基金青年基金项目1项、国家重点研发计划项目子课题2项、国家863计划课题3项、校企合作项目10余项。 已在各类学术期刊上发表论文60 余篇,获国家发明专利10余项,获中航工业集团科学技术奖三等奖。 lingyingye@csu.edu.cn   
作者简介:  王鹏宇,中南大学材料科学与工程学院研究生,本科就读于中南大学资源加工于生物工程学院,在叶凌英教授的指导下进行研究。目前主要研究领域为高性能铝合金。
引用本文:    
王鹏宇, 叶凌英, 柯彬, 胡恬娇, 董宇, 刘胜胆. 晶粒组织对Al-Zn-Mg合金力学性能和腐蚀性能的影响[J]. 材料导报, 2023, 37(19): 22050211-7.
WANG Pengyu, YE Lingying, KE Bin, HU Tianjiao, DONG Yu, LIU Shengdan. Effect of Grain Structure on Mechanical and Corrosion Properties of Al-Zn-Mg Alloy. Materials Reports, 2023, 37(19): 22050211-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050211  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22050211
1 Li H, Cao F, Guo S, et al, Journal of Alloys and Compounds, 2017, 719, 89.
2 Zander D, Schnatterer C, Altenbach C, et al. Material & Design, 2015, 83, 49.
3 Schnatterer C, Bulinager A, Zander D. Materials and Corrosion, 2016, 67(12), 1308.
4 Geertruyden W H V, Browne H M, Misiolek W Z, et al. Metallurgical & Materials Transactions A, 2005, 36(4), 1049.
5 Liu C M. Processing of nonferrous metals, Central South University Press, China, 2010, pp. 66(in Chinese).
刘楚明. 有色金属材料加工, 中南大学出版社, 2010, pp. 66.
6 Chen S Y, Chen K H, Dong P X, et al. Transactions of Nonferrous Metals Society of China, 2013(2), 329 (in Chinese).
陈送义, 陈康华, 董朋轩, 等. 中国有色金属学报, 2013(2), 329.
7 GB/T 22639-2008. Test method for exfoliation corrosion for wrought aluminum and aluminum alloys, Standards Press of China, China, 2008(in Chinese).
GB/T 22639-2008. 铝合金加工产品的剥落腐蚀实验方法, 中国标准出版社, 2008.
8 Sun Z X, Peng G S, Chen K H, et al. Powder Metallurgy Materials Science and Engineering, 2012(3), 297(in Chinese).
孙兆霞, 彭国胜, 陈康华, 等. 粉末冶金材料科学与工程, 2012(3), 297.
9 Chen K H, Chen S Y, Peng G. Special Casting and Nonferrous Alloys, 2010(2), 103(in Chinese).
陈康华, 陈送义, 彭国胜, 等. 特种铸造及有色合金, 2010(2), 103.
10 Liu W J, Zhang X M, Liu S D, et al. Transactions of Nonferrous Metals Society of China, 2010(6), 1102 (in Chinese).
刘文军, 张新明, 刘胜胆, 等. 中国有色金属学报, 2010(6), 1102.
11 Ye L Y, Yao X B, Tang J G, et al. Journal of Central South University (Science and Technology), 2019, 50(5), 1049(in Chinese).
叶凌英, 姚学彬, 唐建国, 等. 中南大学学报, 2019, 50(5), 1049.
12 Chai W R, Chen J C, Liu S D, et al. Journal of Materials Research, 2019, 33(7), 489(in Chinese).
柴文茹, 陈景超, 刘胜胆, 等. 材料研究学报, 2019, 33(7), 489.
13 Ding Q W, Zhang D, Yan Y, et al. Corrosion Science, 2020, 169, 108622.
14 Li Z M, Jiang H C, Wang Y L, et al. Journal of Materials Science and Technology, 2018, 34(7), 1172.
15 Wu P P, Tian A Q, Duan H W, et al. Failture Analysis and Prevention, 2016(1), 6(in Chinese).
吴沛沛, 田爱琴, 段浩伟, 等. 失效分析与预防, 2016(1), 6.
16 Shen P Y, Tang J G, Ye L Y, et al. Chinese Journal of Materials Reserch, 2018, 32(10), 751(in Chinese).
申澎洋, 唐建国, 叶凌英, 等. 材料研究学报, 2018, 32(10), 751.
17 Qu M, Tang J G, Ye L Y, et al. Marerials Repeots, 2020, 34(1), 2083(in Chinese).
瞿猛, 唐建国, 叶凌英, 等. 材料导报, 2020, 34(1), 2083.
18 Sinyavskii V S, Ulanova V V, Kalinin V D. Protection of Metals, 2004, 40(5), 481.
19 Yu X W. Relationship between three-dimensional microstructure and properties of deformation-aging Al-Zn-Mg-Cu aluminum alloy. Ph. D. Thesis, Hunan University, China, 2020 (in Chinese).
余雄伟. 形变时效Al-Zn-Mg-Cu铝合金三维微观结构与性能关系研究. 博士学位论文, 湖南大学, 2020.
20 Senkov O N, Shagiev M R, Senkova S V, et al. Acta Materialia, 2008, 56, 3723.
21 Bailey J E, Hirsch P B. Philosophical Magazine, 1960, 5(53), 485.
22 Liao W B, Liu X Y, Liu S D, et al. Journal of Central South University (Natural Science Edition), 2012, 46(6), 2137(in Chinese).
廖文博, 刘心宇, 刘胜胆, 等. 中南大学学报(自然科学版), 2012, 46(6), 2137.
23 He C H, Li H P, Ye L Y, et al. Marerials Repeots, 2021, 35(22), 22109(in Chinese).
贺春花, 李红萍, 叶凌英, 等. 材料导报, 2021, 35(22), 22109.
24 Fang H, Chao H, Chen K. Journal of Alloys and Compounds, 2015, 622, 166.
25 Sinyavskii V. Protection of Metals, 2004, 40(5), 481.
26 Chen M, Deng Y, et al. Materials Characterization, 2019, 148, 259.
[1] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[2] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[3] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[4] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[5] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[6] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[7] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[8] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[9] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[10] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[11] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[12] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[13] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[14] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[15] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed