Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22020043-7    https://doi.org/10.11896/cldb.22020043
  无机非金属及其复合材料 |
再生混凝土微粉在碱激发胶材体系中的作用效应研究
万小梅1,2,*, 车雪萍1, 朱亚光1, 于琦1,3, 江璐璐1
1 青岛理工大学土木工程学院,山东 青岛 266033
2 青岛理工大学蓝色经济区工程建设与安全山东省协同创新中心,山东 青岛 266033
3 青岛青建新型材料集团有限公司,山东 青岛 266108
Investigation on the Effect of Recycled Concrete Powder in Alkali-activated Cementitous Materials
WAN Xiaomei1,2,*, CHE Xueping1, ZHU Yaguang1, YU Qi1,3, JIANG Lulu1
1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China
2 Collaborative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao University of Technology, Qingdao 266033, Shandong, China
3 Qingdao Qingjian New Material Group Co., Ltd., Qingdao 266108, Shandong, China
下载:  全 文 ( PDF ) ( 20022KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 再生混凝土微粉(RCP)中含有大量的SiO2、CaO、Al2O3和少量未水化的水泥,通过物理或化学激发后可作为辅助性胶凝材料(SCMs)。再生微粉的资源化利用对节约原料和处置利用废弃物具有重要意义。本工作制备了不同RCP取代率的碱激发胶凝材料,研究了其流动性能、力学性能、微观表征及水化过程。结果表明,RCP的掺入提高了碱激发胶凝材料的流动性,10%~40%取代率下胶凝材料的流动性总体提高了2%~12%;当RCP掺量为10%时,碱矿渣胶凝材料的抗压强度提高了13%;RCP中的非活性颗粒填充了水化产物间的孔隙,形成了密实的微观结构;RCP中非活性颗粒阻碍了碱溶液与矿渣的反应,因此RCP的掺入推迟了碱激发体系第二放热峰的出现,降低了胶凝材料的早期放热速率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
万小梅
车雪萍
朱亚光
于琦
江璐璐
关键词:  碱激发  再生微粉  流动性  力学性能  水化热    
Abstract: The recycled concrete powder (RCP) contains a large amount of SiO2, CaO, Al2O3 and a small amount of unhydrated cement, which can be used as supplementary cementing materials (SCMs) through physical or chemical excitation. The resource utilization of recycled concrete powder is of great significance to save raw materials and dispose of waste. In this work, alkali-activated cementitious materials with different RCP substitution rates were prepared, and their fluidity, mechanical properties, microscopic characterization and hydration process were studied. The results show that the addition of RCP improves the fluidity of alkali-activated cementitious materials, and the fluidity of alkali-activated cementitious materials increase by 2%—12% at 10%—40% substitution rate. When RCP content is 10%, the compressive strength of alkali slag cementitious material increase by 13%. Inactive particles in RCP fill the pores and form dense microstructure. Since the inactive particles in RCP hinder the reaction between alkali solution and slag, the introduction of RCP delays the emergence of the second exothermic peak and decreases the early exothermic rate of alkali-activated cementitious materials.
Key words:  alkali-activated    recycled fine powder    fluidity    mechanical property    hydration heat
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51878365)
通讯作者:  *万小梅,青岛理工大学教授、博士研究生导师。主要从事高性能混凝土及混凝土的耐久性、新型胶凝材料混凝土、混凝土中固废资源化利用的研究与教学工作。wanxiaomeiqj@126.com   
引用本文:    
万小梅, 车雪萍, 朱亚光, 于琦, 江璐璐. 再生混凝土微粉在碱激发胶材体系中的作用效应研究[J]. 材料导报, 2023, 37(19): 22020043-7.
WAN Xiaomei, CHE Xueping, ZHU Yaguang, YU Qi, JIANG Lulu. Investigation on the Effect of Recycled Concrete Powder in Alkali-activated Cementitous Materials. Materials Reports, 2023, 37(19): 22020043-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020043  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22020043
1 Yazdani M, Kabirifar K, Frimpong B E, et al. Journal of Cleaner Production, 2021, 280, 124138.
2 Yue G B, Ma Z M, Liu M, et al. Construction and Building Materials, 2020, 245, 118419.
3 Wu H Y, Zuo J, Zillante G, et al. Journal of Cleaner Production, 2019, 240, 118163.
4 Zheng L, Wu H Y, Zhang H, et al. Construction and Building Materials, 2017, 136, 405.
5 Zhang C B, Hu M H, Di Maio F, et al. Science of the Total Environment, 2022, 803, 149892.
6 Nedeljković M, Visser J, Šavija B, et al. Journal of Building Enginee-ring, 2021, 38, 102196.
7 Guo H, Shi C J, Guan X M, et al. Cement and Concrete Composites, 2018, 89, 251.
8 Tam V W Y, Wattage H, Le K N, et al. Construction and Building Materials, 2021, 270, 121490.
9 Li S J, Gao J M, Li Q Y, et al. Construction and Building Materials, 2021, 267, 120976.
10 Oliveira T C F, Dezen B G S, Possan E. Journal of Cleaner Production, 2020, 273, 123126.
11 Tang Q, Ma Z M, Wu H X, et al. Cement and Concrete Composites, 2020, 114, 103807.
12 He Z M, Shen A Q, Wu H S, et al. Construction and Building Materials, 2021, 274, 122113.
13 Robayo-Salazar R A, Mejía-Arcila J M, de Gutiérrez R M. Journal of Cleaner Production, 2017, 166, 242.
14 Villaquirán-Caicedo M A, de Gutiérrez R M. Construction and Building Materials, 2021, 281, 122599.
15 Ulugöl H, Kul A, Yıldırım G, et al. Journal of Cleaner Production, 2021, 280, 124358.
16 Robayo-Salazar R A, Rivera J F, de Gutiérrez R M. Construction and Building Materials, 2017, 149, 130.
17 Sun Z Q, Cui H, An H, et al. Construction and Building Materials, 2013, 49, 281.
18 Lin W S. Effect of the recycled powder on cement hydration and concrete performance. Master's Thesis, Fuzhou University, China, 2018 (in Chinese).
林尾妹. 再生粉体对水泥水化及混凝土性能的影响. 硕士学位论文, 福州大学, 2018.
19 Liu C. Research on preparation and application of alkali activated recycled concrete powder cementitious material. Master's Thesis, Yangzhou University, China, 2021 (in Chinese).
刘聪. 碱激发再生微粉胶凝材料制备及其应用研究. 硕士学位论文, 扬州大学, 2021.
20 Dai J X, Shi X S, Wang Q Y, et al. Materials Reports, 2021, 35(9), 9077 (in Chinese).
代金芯, 石宵爽, 王清远, 等. 材料导报, 2021, 35(9), 9077.
21 Yang D, Pang L X, Song D, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(9), 3005 (in Chinese).
杨达, 庞来学, 宋迪, 等. 硅酸盐通报, 2021, 40(9), 3005.
22 Zawrah M F, Gado R A, Feltin N, et al. Process Safety and Environmental Protection, 2016, 103, 237.
23 Reig L, Tashima M M, Borrachero M V, et al. Construction and Building Materials, 2013, 43, 98.
24 Yip C K, Van Deventer J S J. Journal of Materials Science, 2003, 38(18), 3851.
25 Bassani M, Tefa L, Coppola B, et al. Journal of Cleaner Production, 2019, 234, 71.
26 Tan L F, Qu B, Shi C J, et al. Materials Reports, 2020, 34(12), 12057(in Chinese).
覃丽芳, 曲波, 史才军, 等. 材料导报, 2020, 34(12), 12057.
27 Xu X F, Tang S W, He Z. Bulletin of the Chinese Ceramic Society, 2021, 40(12), 3903(in Chinese).
徐晓飞, 汤盛文, 何真. 硅酸盐通报, 2021, 40(12), 3903.
28 Chen G F, Gao J M, Zhao Y S. Journal of Southeast University (Natural Science Edition), 2020, 50(5), 858 (in Chinese).
陈高丰, 高建明, 赵亚松. 东南大学学报(自然科学版), 2020, 50(5), 858.
29 Zhao S. Study on hydration character of alkali-activated slag cement. Master's Thesis, Chongqing University, China, 2012 (in Chinese).
赵爽. 碱矿渣水泥水化特性研究. 硕士学位论文, 重庆大学, 2012.
[1] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[2] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[3] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[4] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[5] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[6] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[7] 李贞, 刘加平, 乔敏, 于诚, 谢惟肖, 陈俊松. 基于减水剂吸附行为的再生微粉-水泥浆体黏度调控机理研究[J]. 材料导报, 2023, 37(8): 21090090-7.
[8] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[9] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[10] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[11] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[12] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[13] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[14] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[15] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed