Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9196-9209    https://doi.org/10.11896/cldb.20020109
  高分子与聚合物基复合材料 |
N-杂环卡宾活化二氧化碳的研究进展
陈恩丽, 段俊新*, 谢智中
武汉理工大学化学化工与生命科学学院,武汉 430070
Research Progress on N-heterocyclic Carbene Activating Carbon Dioxide
CHEN Enli, DUAN Junxin*, XIE Zhizhong
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 5182KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着经济的快速发展,二氧化碳的排放量越来越大,温室效应日益明显。为降低空气中二氧化碳含量甚至有效开发利用二氧化碳,化学工作者们尝试了各种策略并取得了一定成果。其中之一就是使用N-杂环卡宾金属配合物将二氧化碳活化,使之转化为高附加值的化工原料或燃料,从而实现能量存储和碳资源的循环利用。本文总结了利用N-杂环卡宾(NHCs, N-Heterocyclic Carbenes)与Cu、Pd、Ag等过渡金属的配合物活化二氧化碳和催化二氧化碳与有机物的反应方面的研究进展,并对其发展和应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈恩丽
段俊新
谢智中
关键词:  N-杂环卡宾  CO2活化  过渡金属    
Abstract: The continuously increasing CO2 emission, as all known harmful to the global environment and responsible for the greenhouse effect, have raised worldwide researches aiming to reduce CO2 content in the atmosphere or even to effectively utilize CO2. One of the various potential approaches is using N-heterocyclic Carbenes (NHCs) and its metal complexes to activate CO2, and convert it into chemical raw materials or fuels so as to achieve the purpose of recycling carbon resources. This review gives a summary of the research progress in applying NHC and its complexes with transition metals Cu, Pd and Ag to the activating CO2 and catalyzing reactions of CO2 and organic compounds such as alkenes and alkynes. It ends with a critical analysis of the developmental prospects of this field.
Key words:  N-heterocyclic Carbene    carbon dioxide activation    transition metal
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  O621.3  
  O657.3  
基金资助: 武汉理工大学自主创新研究基金项目(2019-IB-025)
通讯作者:  duanjunxin994@163.com   
作者简介:  陈恩丽,2015年6月毕业于武汉理工大学,获得理学学士学位。现为武汉理工大学化学化工与生命科学学院研究生,在谢智中教授的指导下进行研究。目前主要从事金属卡宾催化二氧化碳还原机理的理论研究。
谢智中,武汉理工大学化学化工与生命科学学院教授、博士研究生导师。2001年7月毕业于安徽师范大学化学系,2006年7月在北京师范大学化学学院物理化学专业取得博士学位,2006—2009年在新加坡南洋理工大学进行博士后研究工作。2009年4月进入武汉理工大学化学系工作,主要从事化学反应机理的理论研究。近年来在金属有机和能源领域发表论文70余篇,包括 OrganometallicsPhysical Chemistry Chemical PhysicsChemistry-A European Journal等。
段俊新,武汉理工大学化学化工与生命科学学院教师。2008年7月毕业于长治大学化学系,2019年1月在武汉理工大学材料科学与工程学院材料化学专业取得博士学位,并留校任教,主要从事化学反应机理的理论研究。近年来在金属有机和能源领域发表论文6篇,包括OrganometallicsPhysical Chemistry Chemical Physics等。
引用本文:    
陈恩丽, 段俊新, 谢智中. N-杂环卡宾活化二氧化碳的研究进展[J]. 材料导报, 2021, 35(9): 9196-9209.
CHEN Enli, DUAN Junxin, XIE Zhizhong. Research Progress on N-heterocyclic Carbene Activating Carbon Dioxide. Materials Reports, 2021, 35(9): 9196-9209.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020109  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9196
1 Sakakura T, Chio J C, Yasuda H. Chemical Reviews,2007,107(6),2365.
2 Leitner W. Coordination Chemistry Reviews,1996,153,257.
3 Gibson D H. Chemical Reviews,1996,96(6),2063.
4 Perez E R, Santos R H A, Gambardella M T P, et al. Journal of Organic Chemistry,2004,69(23),8005.
5 Castro-rodriguez L, Nakai H, Zakharov L N, et al. Science,2004,305(5691),1757.
6 Nicholas K M. Journal of Organometallic Chemistry,1980,188(1),C10.
7 Ha N N, Ha N T T, Vankhu L, et al. Journal of Molecular Modeling,2015,21(12),1.
8 Pandey K K, Garg K H, Tiwari S K. Polyhedron,1992,11(8),947.
9 Joslin F L, Johnson M P, Mague J T, et al. Organometallics,1991,10(8),2781.
10 Mashima K, Tanaka Y, Nakamura A. Organometallics,1995,14(12),5642.
11 Correa A, Martin R. Angewandte Chemie-International Edition,2009,48(34),6201.
12 Ebert G W, Juda W L, Kosakowski R H, et al. Journal of Organic Che-mistry,2005,70(11),4314.
13 Lu X B, Shi L, Wang Y M, et al. Journal of the American Chemical So-ciety,2006,128(5),1664.
14 Morgenstern D A, Wittrig R E, Fanwick P E, et al. Journal of the American Chemical Society,1993,115(14),6470.
15 Angamuthu R, Byers P, Lutz M, et al. Science,2010,327(5963),313.
16 Liu S, Yang H B, Hung S F, et al. Angewandte Chemie-International Edition,2020,59(2),798.
17 Fang S, Fujimoto K. Applied Catalysis A: General,1996,142(1),L1.
18 Fujita S I, Bhanage B M, Arai M, et al. Green Chemistry,2001,3(2),87.
19 Cao F H, Fang D Y, Liu D H, et al. ACS Symposium Series,2003,852,159.
20 Cai Q, Jin C, Lu B, et al. Catalysis Letters,2005,103(3-4),225.
21 Kirmse W. Angewandte Chemie-International Edition,2004,43(14),1746.
22 Öfele K. Journal of Organometallic Chemistry,1968,12(3),P42.
23 Wanzlick H W, Schonherr H J. Angewandte Chemie-International Edition in English,1968,7(2),141.
24 Anthony J, Arduengo III, Richard L, et al. Journal of the American Chemical Society,1991,113(1),361.
25 Herrmann W A, Koecher C. Angewandte Chemie-International Edition in English,1997,36(20),2162.
26 Mankad N P, Gray T G, Laitar D S, et al. Organometallics,2004,23(6),1191.
27 Ohishi T, Nishiura M, Hou Z. Angewandte Chemie-International Edition,2008,47(31),5792.
28 Zhang L, Cheng J, Ohishi T, et al. Angewandte Chemie-International Edition,2010,49(46),8670.
29 Ariafard A, Zarkoob F, Batebi H, et al. Organometallics,2011,30(22),6218.
30 Yu D Y, Zhang Y G. Proceedings of the National Academy of Sciences of the United States of America,2010,107(47),20184.
31 Yang L H, Yuan Y L, Wang H M, et al. RSC Advances,2014,4(61),32457.
32 Wu Z X, Vandichel M, Verpoort F, et al. Catalysis Letters,2017,147(2),463.
33 Fortman G C, Nolan S P, Boogaerts I I F, et al. Angewandte Chemie-International Edition,2010,49(46),8674.
34 Ohishi T, Zhang L, Hou Z M, et al. Angewandte Chemie-International Edition,2011,50(35),8114.
35 Shintani R, Nozaki K. Organometallics,2013,32(8),2459.
36 Zhang W Z, Li W J, Lu X B, et al. Organic Letters,2010,12(21),4748.
37 Zhang L, Cheng J H, Hou Z M, et al. Journal of the American Chemical Society,2012,134(35),14314.
38 Zhang L, Cheng J H, Hou Z M. Chemical Communications,2013,49(42),4782.
39 Zhao H T, Lin Z Y, Marder T B. Journal of the American Chemical Society,2006,128(49),15637.
40 Li X Y, Hou M Q, Zou L Z, et al. Green Chemistry,2008,10(8),879.
41 Yang Z Z, Zhao Y N, Yin Z S, et al. Green Chemistry,2012,14(2),519.
42 Luo R C, Zhou X T, Ji H B, et al. Green Chemistry,2014,16(3),1496.
43 Fujita K I, Sato J, Inoue K, et al. Tetrahedron Letters,2014,55(19),3013.
44 Da A P, Ji Y R, Junseong L, et al. RSC Advances,2017,7(83),52496.
45 Jolly P W, Jonas K, Tsay Y H, et al. Journal of Organometallic Chemistry,1971,33(1),109.
46 Field J S, Haines R J, Woollam S F, et al. Journal of the Chemical Society, Dalton Transactions,1993,18,2735.
47 Litz K E, Henderson K, Gourley R W, et al. Organometallics,1995,14(11),5008.
48 Lundquist E G, Huffman J C, Caulton K G, et al. Inorganic Chemistry,1990,29(1),128.
49 Fachinetti G, Floriani C, Zanazzi P F. Journal of the American Chemical Society,1978,100(23),7405.
50 Lee C H, Laitar D S, Mueller P, et al. Journal of the American Chemical Society,2007,129(45),13802.
51 Lee G R, Cooper N J. Organometallics,1985,4(8),1467.
52 Eugenio S M, Kubiak C P. Organometallics,2005,24(1),96.
53 Li J, Lin Z Y. Organometallics,2009,28(14),4231.
54 Tsuda T, Morikawa S, Saegusa T, et al. Journal of Organic Chemistry,1990,55(9),2978.
55 Tsuda T, Yasukawa H, Komori K. Macromolecules,1995,28(5),1356.
56 Louie J, Gibby J E, Tekavec T N. Journal of the American Chemical So-ciety,2002,124(51),15188.
57 Tekavec T N, Zuo G, Louie J, et al. Journal of Organic Chemistry,2006,71(15),5834.
58 Tekavec T N, Arif A M, Louie J. Tetrahedron,2004,60(34),7431.
59 Makida Y, Marelli E, Nolan S P, et al. Chemical Communications,2014,50(59),8010.
60 Delarmelina M, Marelli E, Nolan S P, et al. Chemistry-A European Journal,2017,23(59),14954.
61 Santi R, Marchi M. Journal of Organometallic Chemistry,1979,182(1),117.
62 Wu J G, Green J C, Hazari N, et al. Organometallics,2010,29(23),6369.
63 Hruszkewycz D P, Wu J G, Hazari N, et al. Journal of the American Chemical Society,2011,133(10),3280.
64 Wu J G, Hazariazari N. Chemical Communications,2011,47(3),1069.
65 Johansson R, Wendt O F. Dalton Transactions,2007,4,488.
66 Wang H M J, Lin L J B. Organometallics,1998,17(5),972.
67 Hintermair U, Englert U, Leitner W. Organometallics,2011,30(14),3726.
68 Partyka D V, Hunter A D, Gray T G, et al. Organometallics,2009,28(3),795.
69 De F P, Scott N M, Nolan S P, et al. Organometallics,2005,24(26),6301.
70 Partyka D V, Deligonul N. Inorganic Chemistry,2009,48(19),9463.
71 Lin L J B, Vasam C S. Comments Inorganic Chemistry,2004,25(3-4),75.
72 Yu D Y, Tan M X, Zhang Y G. Advanced Synthesis & Catalysis,2012,354(6),969.
73 Zhang X, Zhang W Z, Lu X B, et al. Organic Letters,2011,13(9),2402.
74 Goossen L J, Rodriguez N, Manjolinho F, et al. Advanced Synthesis & Catalysis,2010,352(17),2913.
75 Li S S, Sun J, Zhou M D, et al. Dalton Transactions,2016,45(26),10577.
76 Manjolinho F, Arndt M, Goossen L J, et al. ACS Catalysis,2012,2(9),2014.
77 Wang W L, Zhang G D, Li F W, et al. Green Chemistry,2013,15(3),635.
78 Guo C X, Yu B, He L N, et al. Green Chemistry,2015,17(1),474.
79 Tang X D, Qi C R, Yuan G Q, et al. Advanced Synthesis & Catalysis,2013,355(10),2019.
80 Yuan Y, Xie Y, Verpoort F, et al. Applied Organometallic Chemistry,2017,31(12),e3867.
81 Bonati F, Burini A, Bovio B, et al. Journal of Organometallic Chemistry,1989,375(1),147.
82 Raubenheimer H G, Lindeque L, Cronje S. Journal of Organometallic Chemistry,1996,511(1-2),177.
83 Chia E Y, Naeem S, Delaude L. Dalton Transactions,2011,40(25),6645.
84 Cokoja M, Bruckmeier C, Herrmann W A. Angewandte Chemie-International Edition,2011,50(37),8510.
85 Marion N, Ramon R S, Nolan S P. Journal of the American Chemical Society,2009,131(2),448.
86 Lin I J B, Vasam C S. Canadian Journal of Chemistry,2005,83(6-7),812.
87 De F P, Scott N M, Nolan S P, et al. Organometallics,2005,24(10),2411.
88 Marion N, Nolan S P. Chemical Society Reviews,2008,37(9),1776.
89 Dalton D M, Rovis T. Nature Chemistry,2010,2(9),710.
90 Gaillard S, Slawin A M Z, Nolan S P. Chemical Communications,2010,46(16),2742.
91 Boogaerts I I F, Nolan S P. Journal of the American Chemical Society,2010,132(26),8858.
92 Dupuy S, Lazreg F, Nolan S P, et al. Chemical Communications,2011,47(19),5455.
93 Zhang X, Geng Z, Wang D, et al. Journal of Molecular Catalysis A-Chemical,2012,363-364,31.
94 Johnson M T, Axelsson M, Wendt O F, et al. Chemical Science,2011,2(12),2373.
95 Hase S, Kayaki Y, Lkariya T. Organometallics,2013,32(19),5285.
96 Yuan R M, Lin Z Y. ACS Catalysis,2015,5(5),2866.
[1] 任瑞丽, 王会才, 高丰, 岳瑞瑞, 汪振文. 石墨烯基柔性超级电容器复合电极材料的研究进展[J]. 材料导报, 2020, 34(11): 11099-11105.
[2] 杜洪方, 王珂, 何松, 杨凯, 艾伟, 黄维. 富缺陷晶态WSe2纳米片:一种潜在的高效低成本析氢反应电催化剂[J]. 材料导报, 2020, 34(1): 1195-1200.
[3] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[4] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[5] 岳瑞瑞, 王会才, 刘霞平, 杨继斌, 汪振文. 可拉伸超级电容器碳基复合电极材料的研究进展[J]. 材料导报, 2019, 33(21): 3580-3587.
[6] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
[7] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[8] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[9] 徐志勇, 冯东, 赵文波, 柴牧原, 陈玲, 陈媛. 均匀沉淀法可控制备氯化镉氨配合物[J]. 材料导报, 2018, 32(24): 4240-4247.
[10] 张玮倩, 许秀玲, 周国伟. 二元及三元过渡金属氧化物的制备及其电化学应用研究进展[J]. 材料导报, 2018, 32(21): 3731-3736.
[11] 李晨旭, 彭伟, 方振东, 刘杰. 过渡金属氧化物非均相催化过硫酸氢盐(PMS)活化及氧化降解水中污染物的研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2223-2229.
[12] 傅瑜,何俊宝,张萍,冷玉敏,马奔原,李纪燕. 过渡金属铋化物BaAg2-δBi2单晶的制备和物理性质[J]. 《材料导报》期刊社, 2018, 32(12): 2043-2046.
[13] 唐捷, 华青松, 元金石, 张健敏, 赵玉玲. 超级电容器中的二维材料[J]. CLDB, 2017, 31(9): 26-35.
[14] 傅深娜, 马利, 甘孟瑜, 汪仕勇. 三维石墨烯及其复合材料的制备及在超级电容器中的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 9-15.
[15] 叶长福, 郑会元, 劳铭, 周文政, 郭进, 黎光旭. 过渡金属离子掺杂对磷酸铁锂性能的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 29-32.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed