Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22030145-7    https://doi.org/10.11896/cldb.22030145
  无机非金属及其复合材料 |
碳纳米管改性沥青混合料低温裂缝扩展分析
栾利强1,2,*, 文双寿1,2, 余和德1,2, 任俊颖1,2
1 桂林理工大学土木与建筑工程学院,广西 桂林 541004
2 广西岩土力学与工程重点实验室,广西 桂林 541004
Analysis of Low-temperature Crack Expansion of Carbon Nanotube-modified Asphalt Mixes
LUAN Liqiang1,2,*, WEN Shuangshou1,2, YU Hede1,2, REN Junying1,2
1 School of Civil and Architectural Engineering, Guilin University of Technology, Guilin 541004, Guangxi, China
2 Guangxi Key Laboratory of Geotechnical Mechanics and Engineering, Guilin 541004, Guangxi, China
下载:  全 文 ( PDF ) ( 12374KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究碳纳米管对沥青混合料低温性能的影响,分别以不同碳纳米管掺量的改性沥青混合料为对象进行劈裂试验和小梁剪切疲劳试验,并通过Abaqus建立碳纳米管改性沥青混合料路面有限元模型,从应力强度因子、裂缝能量释放率、裂缝尖端位移等方面对裂缝扩展行为进行分析。结果表明:(1)碳纳米管的加入能够提高沥青混合料的低温抗裂性能,特别是其早期抗裂能力;(2)碳纳米管的加入能够降低张拉型(Ⅰ型)裂纹扩展速度,促进剪切型(Ⅱ型)裂纹的扩展,但Ⅱ型裂纹所产生的剪切力远小于碳纳米管的抗拉裂强度,不足以使裂缝继续扩展,从整体上来说,加入碳纳米管能有效抑制沥青路面裂缝的扩展;(3)碳纳米管掺量越高,断裂释放能越大,碳纳米管在一定程度上能减弱或吸收沥青混合料外部能量,起到消能作用,限制裂缝尖端位移的变大,使得沥青混合料具有更好的低温抗裂性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
栾利强
文双寿
余和德
任俊颖
关键词:  道路工程  碳纳米管  低温抗裂性  应力强度因子  能量释放率  Abaqus有限元模型    
Abstract: The effect of carbon nanotubes on the low-temperature performance of asphalt mixtures with different amounts of carbon nanotube modified asphalt mixture was studied by cleavage test and trabecular shear fatigue test. And the finite element model of carbon nanotube modified asphalt mixture pavement was established by Abaqus to analyze the crack extension behavior in terms of stress intensity factor, crack energy release rate, crack tip displacement, etc. The results show that: (1) the addition of carbon nanotubes improves the low-temperature crack resis-tance of asphalt mixtures, particularly its early crack resistance. (2) The addition of carbon nanotubes reduces the expansion rate of tensile (type Ⅰ) cracks and promotes the expansion of shear type (Ⅱ) cracks, but the shear force generated by type Ⅱ cracks is much less than the tensile crack strength of carbon nanotubes, which is not enough to make the cracks continue to expand. Overall, the addition of carbon nanotubes can effectively inhibit the expansion of cracks on asphalt pavement. (3) The higher the amount of carbon nanotube doping, the greater the fracture release energy. The carbon nanotube can weaken or absorb the external energy of the asphalt mixture to a certain extent, play a role in dissipating energy, limit the expansion of the fracture tip displacement, and make the asphalt mixture have better low-temperature crack resistance.
Key words:  road engineering    carbon nanotubes    low-temperature crack resistance    stress intensity factor    energy release rate    Abaqus finite element model
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  U416  
基金资助: 国家自然科学基金(51369010);广西科技基地与人才专项(AD19110085);广西岩土力学与工程重点实验室(2018-A-01)
通讯作者:  *栾利强,桂林理工大学副教授、硕士研究生导师。分别于2005年6月和2009年6月获得长沙理工大学工学学士学位和道路与铁道工程硕士学位,2014年5月获得同济大学交通运输工程学院道路与铁道工程博士学位,2016年就职于桂林理工大学土木与建筑工程学院,2019年华南理工大学博士后出站。近年来,主要致力于沥青路面开裂与车辙、路面结构优化、新型路面环保材料与导电沥青混凝土等研究工作,主持参与国家自然科学基金重点项目、广西科技厅、上海市科技计划等项目10余项。在国内外发表学术论文20余篇,授权专利5项,撰写专著1篇。1705280939@qq.com   
引用本文:    
栾利强, 文双寿, 余和德, 任俊颖. 碳纳米管改性沥青混合料低温裂缝扩展分析[J]. 材料导报, 2023, 37(20): 22030145-7.
LUAN Liqiang, WEN Shuangshou, YU Hede, REN Junying. Analysis of Low-temperature Crack Expansion of Carbon Nanotube-modified Asphalt Mixes. Materials Reports, 2023, 37(20): 22030145-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030145  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22030145
1 Zheng J L, Yu H Y, Liu P F, et al. China Journal of Highway and Transport, 2020, 33(10), 1(in Chinese).
郑健龙, 于华洋, 刘鹏飞, 等. 中国公路学报, 2020, 33(10), 1.
2 Chen F, Zhang L Y, Feng J L, et al. Materials Reports, 2021, 35(S2), 127(in Chinese).
陈飞, 张林艳, 封基良, 等. 材料导报, 2021, 35(S2), 127.
3 Li X J, Marasteanu M O, Kvasnak A, et al. Journal of Materials in Civil Engineering, 2010, 22(2), 145.
4 Liao H. Investigation on Properties and Micro Structuers of MWCNTs Modified Bitumen. Master’s Thesis, Southeast University, 2018(in Chinese).
廖辉. 多壁碳纳米管改性沥青性能与微观结构研究. 硕士学位论文, 东南大学, 2018.
5 Cao R M, Chen X B, Chen X H. Journal of Jiangsu University(Natural Science Edition), 2020, 41(4), 473(in Chinese).
曹睿明, 陈小兵, 陈先华. 江苏大学学报(自然科学版), 2020, 41(4), 473.
6 Zhu H R, Wei J M, Gong M H, et al. Journal of Petroleum Processing, 2017, 33(2), 386(in Chinese).
朱浩然, 魏建明, 龚明辉, 等. 石油学报(石油加工), 2017, 33(2), 386.
7 Xue Z H, Fan X H. New Building Materials, 2021, 48(6), 106(in Chinese).
薛振华, 樊兴华. 新型建筑材料, 2021, 48(6), 106.
8 Xiao X L. Study on carbon nanotube/SBS composite modified asphalt and mixture properties. Master’s Thesis, Changsha University of Science and Technology, 2017(in Chinese).
肖学良. 碳纳米管/SBS复合改性沥青及混合料性能研究. 硕士学位论文, 长沙理工大学, 2017.
9 Yang Q. Study on mechanical properties of carbon nanotube-enhanced asphalt mixtures. Master’s Thesis, Zhejiang University, 2015(in Chinese).
杨骞. 碳纳米管增强沥青混合料的力学性能研究. 硕士学位论文, 浙江大学, 2015.
10 Sun Q Y. Rheological properties of carbon nanotubes/SBS composite modified bitumen. Master’s Thesis, Chang’an University, 2020(in Chinese).
孙启宇. 碳纳米管/SBS复合改性沥青流变性质研究. 硕士学位论文, 长安大学, 2020.
11 Du J H, Ren D Y, Ai C F, et al. Construction and Building Materials, 2021, 290
12 Song W M, Xu Z H, Wu H, et al. Journal of Central South University(Natural Science Edition), 2021, 52(7), 2386(in Chinese).
宋卫民, 徐子浩, 吴昊, 等. 中南大学学报(自然科学版), 2021, 52(7), 2386.
13 Liang J L, Gao J P, Chang L. Journal of Guangxi University(Natural Science Edition), 2016, 41(1), 246(in Chinese).
梁俊龙, 高江平, 苌亮. 广西大学学报(自然科学版), 2016, 41(1), 246.
14 Chen G X, Yin Y P, Luo Y F. New Chemical Materials, 2022, 50(3), 276(in Chinese).
陈改霞, 尹艳平, 罗要飞. 化工新型材料, 2022, 50(3), 276.
15 Khattak M J, Khattab A, Hashim R. Construction & Building Materials, 2013, 40(3), 738.
16 Luan L Q. Chinese Journal of Civil Engineering, 2017, 50(9), 118(in Chinese).
栾利强. 土木工程学报, 2017, 50(9), 118.
17 Yu C H, Hu K, Chen G X, et al. Journal of Zhejiang University-Science(Applied Physics & Engineering), 2021, 22(7), 528.
18 Liao G Y, Huang X M. Application of ABAQUS finite element software in road engineering. Southeast University Press, China, 2014, pp. 183(in Chinese).
廖公云, 黄晓明. ABAQUS有限元软件在道路工程中的应用. 东南大学出版社, 2014, pp. 183.
19 Tian X G, Han H F, Li X W, et al. Journal of Building Materials, 2016, 19(4), 758(in Chinese).
田小革, 韩海峰, 李新伟, 等. 建筑材料学报, 2016, 19(4), 758.
20 Wang P. Interfacial enhancement mechanism and rheological properties of composite polymer modified asphalt with carbon nanotube. Ph. D. Thesis, Harbin Institute of Technology, 2017(in Chinese).
王鹏. 碳纳米管/聚合物复合改性沥青界面增强机制及流变特性研究. 博士学位论文, 哈尔滨工业大学, 2017.
[1] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[2] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[3] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[4] 张新强, 唐伯明, 曹雪娟, 杨晓宇, 唐乃膨, 朱洪洲. 道路沥青材料VOCs释放特性与抑制措施研究进展[J]. 材料导报, 2023, 37(6): 21070149-9.
[5] 陈点, 吕仕铭, 汪羽翎. 非共价键化学修饰碳纳米管的分散及其机理[J]. 材料导报, 2023, 37(17): 22040300-18.
[6] 郭乃胜, 于安康, 王志臣, 房辰泽. 基于吸附沥青膜厚度的沥青与矿粉交互作用能力评价研究[J]. 材料导报, 2023, 37(17): 22010049-8.
[7] 夏伟, 陆松, 白二雷, 许金余, 杜宇航, 姚廒. 碳纳米管-碳纤维复合改性混凝土力学性能研究[J]. 材料导报, 2023, 37(16): 22010125-9.
[8] 朱建平, 张素娟, 高飞, 张文艳. CNTs@SiO2核壳结构纳米线对水泥力学性能及微观结构的影响[J]. 材料导报, 2023, 37(16): 22010225-6.
[9] 宫兴, 英红, 梁凤芯, 刘卫东, 许修权. 降低沥青路面温度的双向热诱导相变结构研究[J]. 材料导报, 2023, 37(13): 21040242-6.
[10] 冯云霞, 罗钰鸿, 牛开民, 郭鹏. 盐及环境耦合作用下沥青和混合料性能劣化规律及机理研究进展[J]. 材料导报, 2023, 37(13): 22050114-10.
[11] 刘忠柱, 赵伟, 潘玮, 李睢水, 郑国强, 李倩. 多壁碳纳米管改性等规聚丙烯复合材料的结构及性能研究[J]. 材料导报, 2023, 37(1): 20100004-6.
[12] 孙思威, 金鑫, 邓昌宁, 郭乃胜, 余耀威. 基于分形理论的蓄能自发光道路标线涂料性能预测模型研究[J]. 材料导报, 2022, 36(Z1): 20110256-7.
[13] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[14] 程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
[15] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed