Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22030068-19    https://doi.org/10.11896/cldb.22030068
  高分子与聚合物基复合材料 |
封孔剂降低热喷涂涂层孔隙率的研究进展
王浩臻1,2, 周新远2, 刘明2,*, 贾磊1,*, 黄艳斐2, 王海斗2,3
1 西安理工大学材料科学与工程学院,西安 710072
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 陆军装甲兵学院机械产品再制造国家工程研究中心 北京 100072
Research Progress of the Sealant Decreased Thermal Spray Coating Porosity
WANG Haozhen1,2, ZHOU Xinyuan2, LIU Ming2,*, JIA Lei1,*, HUANG Yanfei2, WANG Haidou2,3
1 School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710072, China
2 National Key Laboratory for Remanufacturing, Academy of Army Armored Forces, Beijing 100072, China
3 National Engineering Research Center for Remanufacturing, Academy of Army Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 41198KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热喷涂技术作为表面工程与再制造工程的关键支撑技术之一,集表面防护涂层制备与关键金属构件修复于一体,满足装备耐磨损、耐腐蚀、耐高温隔热及导电、催化、生物活性等不同服役要求,在航空航天、石油化工、交通运输、装备制造等工业领域有广阔的应用前景,是众多高端装备制造不可或缺的高附加价值制造技术。
研究表明,由无数喷涂粒子堆积成形的热喷涂涂层不可避免地存在结构性缺陷(孔隙、裂纹)。然而,随着高端装备制造领域对构件使用性能需求的不断提高,涂层的使用工况趋于严苛。一方面,涂层中复杂的结构缺陷通过影响涂层的力学性能、耐磨损性能等综合性能来制约装备服役可靠性;另一方面,腐蚀性介质(如空气、水、离子等)可以通过通孔直接腐蚀基体而致使涂层脱落失效,限制装备服役寿命。因此,国内外学者致力于热喷涂涂层密封后处理的研究。在实际生产过程中,封孔剂密封处理因兼具技术性、经济性与通用性的显著优势而广泛应用于热喷涂涂层封孔后处理。
其中,有机封孔剂普遍化学性能稳定,渗透能力强,可以有效封闭涂层中大部分通孔,阻断腐蚀通道,显著提高涂层的耐腐蚀性能。而无机封孔剂一般固化收缩率较大,封孔涂层表面易出现裂纹,致使其封孔效果低于有机封孔剂。但是,无机封孔剂密封处理热喷涂涂层具有优异的耐高温、力学性能及耐磨损性能。
本文在分析热喷涂涂层孔隙的形成机理及孔隙对涂层服役性能影响的基础上,详细介绍了应用于热喷涂涂层密封处理的各种封孔剂,综合对比了各封孔剂密封处理热喷涂涂层后的耐腐蚀性能和耐磨损性能,归纳了各封孔剂浸渗工艺的优缺点,并指出了封孔剂密封处理技术存在的关键问题及未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王浩臻
周新远
刘明
贾磊
黄艳斐
王海斗
关键词:  热喷涂涂层  封孔剂  孔隙率  耐腐蚀  耐磨损  浸渗    
Abstract: As one of the key supporting technology of surface and remanufacturing engineering, thermal spraying technology integrates the preparation of surface protective coatings and the repair of metal components to meet the requirements of wear resistance, corrosion resistance, thermal barrier, electric conduction, catalysis, biological activity and so on. It has wide application prospect in aerospace, aviation, petrochemical industry, transportation and other industrial fields, and thermal spraying technology is an indispensable high-value-added manufacturing technology for high-end equipment manufacturing.
Research shows that the thermal spray coating formed by the accumulation of countless spray particle inevitably has structural defects (pores, cracks). However, with the requirements for the performance of equipment continue to increase, the working conditions of coatings tend to be more severe. On the one hand, the complex structural defects in the coating restrict the reliability of the equipment by affecting the comprehensive properties of the coating, such as mechanical properties and wear resistance; on the other hand, air, water, ions and other corrosive media can pass through open pores. It directly corrodes the substrate and causes the coating to fall off, limiting the life of the equipment. Therefore, domestic and foreign scholars are devoted to the research on the post-treatment of thermal spray coating. In the actual production process, the sealant has the significant advantages of technology, economy and versatility, so it is widely used in the post-treatment of thermal spray coatings.
Among them, organic sealant generally has stable chemical properties and better penetration ability, which can effectively close most of the open pores in the coating, block corrosion channels, and significantly improve the corrosion resistance of the coating. The inorganic sealant ge-nerally has a larger curing shrinkage rate, and the surface of the sealed coating is prone to cracks, resulting in its sealed effect being lower than that of the organic sealing agent. However, the thermal sprayed coating sealed by inorganic sealant has excellent high temperature resistance, mechanical properties and wear resistance.
In this paper, on the basis of analysing the formation mechanism of pores in thermal spray coatings and the influence of pores on the service performance of coatings, various sealant used in the sealing treatment of thermal spray coatings are introduced. Corrosion resistance and wear resistance of thermal spray coatings sealed with various sealant are comprehensively compared. The advantages and disadvantages of each sea-lant impregnation process are summarized, and the important problems existing in the sealing treatment technology of the sealant and the future development direction are pointed out.
Key words:  thermal spray coating    sealant    porosity    corrosion resistance    wear resistance    impregnation
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  TG174  
基金资助: 国家自然科学基金(52130509);十四五预研项目支持
通讯作者:  *刘明,中国人民解放军陆军装甲兵学院装备再制造技术国防科技重点实验室助理研究员。2001年7月本科毕业于陆军装甲兵学院,2018年12月在陆军装甲兵学院装备保障与再制造系取得博士学位。长期从事表面涂层、等离子喷涂方面的研究工作,先后主持或参与国家级及军队级科研项目10余项,其中主持装发预研重点基金项目1项、武器装备预研基金项目2项,获军队科技进步二等奖2项。授权国家(国防)发明专利20余项,发表论文40余篇。hzaam@163.com
贾磊,西安理工大学材料科学与工程学院教授、硕士研究生导师。2012年博士毕业于西安理工大学材料科学与工程专业,随后留校任教。主要从事金属基复合材料、先进陶瓷材料的制备、相变行为与强韧化机理研究。近年来在材料科学领域发表论文30余篇,包括Journal of Alloys and Compounds、Materials Characterization、Materials Science and Engineering A、Journal of Materials Science等。xautjialei@hotmail.com   
作者简介:  王浩臻,2019年6月毕业于西安石油大学,获得工学学士学位。现为西安理工大学材料科学与工程学院硕士研究生,在贾磊副教授与刘明助理研究员的指导下进行研究。目前主要研究领域为热喷涂涂层后处理。
引用本文:    
王浩臻, 周新远, 刘明, 贾磊, 黄艳斐, 王海斗. 封孔剂降低热喷涂涂层孔隙率的研究进展[J]. 材料导报, 2023, 37(20): 22030068-19.
WANG Haozhen, ZHOU Xinyuan, LIU Ming, JIA Lei, HUANG Yanfei, WANG Haidou. Research Progress of the Sealant Decreased Thermal Spray Coating Porosity. Materials Reports, 2023, 37(20): 22030068-19.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030068  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22030068
1 Guo H J, Jia J H, Zhang Z Y, et al. Materials Reports, 2013, 27(3), 38(in Chinese).
国洪建, 贾均红, 张振宇, 等. 材料导报, 2013, 27(3), 38.
2 Zhou Y Y, Ma G Z, Wang H D, et al. Materials Reports, 2016, 30(17), 8(in Chinese).
周羊羊, 马国政, 王海斗, 等. 材料导报, 2016, 30(17), 8.
3 Petrovskiy P, Sova A, Doubenskaia M, et al. International Journal of Advanced Manufacturing Technology, 2019, 102, 819.
4 Yang K, Li J, Wang Q Y, et al. Wear, 2019, 426-427, 314.
5 Tian J J, Wei Y K, Li C X, et al. Journal of Thermal Spray Technology, 2018, 27, 232.
6 Li Y, Li X, Hou B, et al. Science and Engineering of Composite Materials, 2012, 19(1), 75.
7 Jo A G, Christopher C B. Metallurgical & Materials Transactions A, 2013, 44, 4844.
8 Xue M, Chandra S, Mostaghimi J, et al. Journal of Thermal Spray Technology, 2006, 15(4), 531.
9 Zhang S H, Wang F C, Ma Z, et al. Materials Reports, 2006, 20(7), 4(in Chinese).
张红松, 王富耻, 马壮, 等. 材料导报, 2006, 20(7), 4.
10 Klement U, Ekberg J, Kelly S T, et al. Journal of Thermal Spray Technology, 2017, 26, 456.
11 Zhou J C, Zhu S, Wang S M, et al. Materials Reports, 2018, 32(19), 13(in Chinese).
周超极, 朱胜, 王晓明, 等. 材料导报, 2018, 32(19), 13.
12 Zhang S D, Zhang W L, Wang S G, et al. Corrosion Science, 2015, 93, 211.
13 He P F, Ma G Z, Wang H D, et al. Journal of Materials Science & Technology, 2021, 28, 216.
14 Xiong H B, Zheng L L, Li L, et al. International Journal of Heat and Mass Transfer, 2005, 48(25-26), 5121.
15 Liu K, Tang J J, Bai Y, et al. Materials Science and Engineering: A, 2015, 625(11), 177.
16 Ma G Z, Chen S Y, He P F, et al. Surface and Coatings Technology, 2019, 358(25), 394.
17 Jin Z A, Liu M, Zhu L N, et al. Journal of Thermal Spray Technology, 2020, 29(3), 489.
18 Wang X M, Zhu S, Yang B J, et al. Rare Metal Materials and Engineering, 2017, 46(12), 3779(in Chinese).
王晓明, 朱胜, 杨柏俊, 等. 稀有金属材料与工程, 2017, 46(12), 3779.
19 Zeng Z, Sakoda N, Tajiri T, et al. Surface & Coatings Technology, 2008, 203(3), 284.
20 Zhang S D, Wu J, Qi W B, et al. Corrosion Science, 2016, 110, 57.
21 Balokhonov R, Zinoviev A, Romanova V, et al. Meccanica, 2016, 51(2), 415.
22 Qiao J H, Bolot R, Liao H, et al. Surface and Coatings Technology, 2013, 220, 170.
23 Rajasekaran G, Parashar A. Materials Today: Proceedings, 2018, 5(2), 6780.
24 Qiao X, Wang Y M, Weng W X, et al. Ceramics International, 2018, 44(17), 21564.
25 Karthikeyan S, Balasubramanian V, Rajendran R, et al. Ceramics International, 2014, 296(30), 31.
26 Karthikeyan S, Balasubramanian V, Rajendran R, et al. Ceramics International, 2014, 40(2), 3171.
27 Jo A G, Christopher C B, Yat C W, et al. Journal of Thermal Spray Technology, 2013, 22(2-3), 337.
28 Ning C, Song X, Liu Z, et al. Journal of Thermal Spray Technology, 2017, 26(4), 1.
29 Wang Y Z, Li J L, Liu H Z, et al. International Journal of Thermal Sciences, 2017, 122, 12.
30 Huang Y, Hu N, Yi Z, et al. Coatings, 2019, 9(2), 138.
31 Tillmann W, Khalil O, Abdulgader M. Coatings, 2019, 9(10), 601.
32 Wei S, Wang F C, Fan Q B, et al. Applied Mathematical Modelling, 2012, 36(5), 1995
33 Wang Y Z, Liu H Z, Ling X X, et al. Applied Thermal Engineering, 2016, 102, 234.
34 Sun F, Fan X, Zhang T, et al. Ceramics International, 2020, 46(15), 24326.
35 Dubrujeaud B, Vardavoulias M, Jeandin M, et al. Wear, 1994, 174(1-2), 155.
36 Munagala V, Bessette S, Gauvin R, et al. Wear, 2020, 450-451, 203268.
37 Li Y J, Luo X T, Li C J. Surface and Coatings Technology, 2017, 328, 304.
38 Cherigui M, Guessasma S, Fenineche N, et al. Materials Chemistry and Physics, 2005, 92(2-3), 419.
39 Yu H B, Zhang H F, Wu B, et al. Materials Reports, 2007, 21(1), 4(in Chinese).
于惠博, 孙宏飞, 武彬, 等. 材料导报, 2007, 21(1), 4.
40 Wen D, Zhao X Q, Yi R, et al. Ceramics International, 2019, 45(5), 5693.
41 Liscano S, Gil L, Staia M H, et al. Surface & Coatings Technology, 2005, 200(5-6), 1310.
42 Yang G J, Li C J, Li C X, et al. Journal of Thermal Spray Technology, 2013, 22(1), 36.
43 Tian Y, Zhang H J, Chen X Y, et al. Surface & Coatings Technology, 2020, 397, 126012.
44 Wen D, An Y L, Zhao X Q, et al. Surface & Coatings Technology, 2020, 399, 126133.
45 Liu Z, Yan D, Dong Y, et al. Corrosion Science, 2013, 75(1), 220.
46 Ctibor P, Neufuss K, Zahalka F, et al. Wear, 2007, 262(9), 1274.
47 Zhang J J, Wang Z H, Lin P H, et al. Surface Engineering, 2013, 29(8), 594.
48 Shao J, Wang Z H, Si L Q, et al. Ceramics, 2019, 63(2), 185.
49 Qiao L, Wu Y P, Duan J Z, et al. Journal of Thermal Spray Technology, 2021, 30, 1557.
50 Zhang J J, Wang Z H, Lin P H, et al. Journal of Thermal Spray Techno-logy, 2011, 20(3), 508.
51 Deng C M, Liu M, Deng C G, et al. Advanced Materials Research, 2012, 538-541, 382.
52 Meng L J. The study of sealing layer for plasma spraying coating by sol-gel method. Master’s Thesis, Wuhan University of Technology, China, 2010(in Chinese).
孟令娟. 溶胶-凝胶法制备等离子喷涂涂层封孔层的研究. 硕士学位论文, 武汉理工大学, 2010.
53 Wang X Y, Hu Z J, Sun C C, et al. Ceramics International, 2019, 5(45), 5413.
54 Liscano S, Gil L, Staia M H, et al. Surface & Coatings Technology, 2005, 200(5-6), 1310.
55 Liscano S, Gil L, Staia M H, et al. Surface & Coatings Technology, 2004, 188(1), 135.
56 Mindivan H. Kovove Materialy, 2010, 48(3), 203.
57 Hamid Rahmati, Farzad Mahboobi. Iranian Journal of Oil & Gas Science and Technology, 2015, 4(4), 67.
58 Wan Y, Yu Y, Cao L, et al. Surface & Coatings Technology, 2016, 307, 316.
59 Lian Z Q. Effect of sealing treatment on the corrosion and wear behaviors of Fe-based amorphous coatings. Master’s Thesis, Huazhong University of Science and Technology, China, 2018(in Chinese).
廉正清. 封孔处理对铁基非晶涂层腐蚀与摩擦行为影响的研究. 硕士学位论文, 华中科技大学, 2018.
60 Dong Y C, Yan D R, Yang Y, et al. Transactions of Materials and Heat Treatment, 2011(S1), 4(in Chinese).
董艳春, 阎殿然, 杨勇, 等. 材料热处理学报, 2011(S1), 4.
61 Cui X J, Lin X L, Liu C H, et al. Corrosion Science, 2015, 90, 402.
62 Shang Y. International Journal of Electrochemical Science, 2016, 11(6), 5234.
63 Zhang L M, Zhang S D, Ma A L, et al. Surface & Coatings Technology, 2018, 353, 263.
64 Lee H S, Singh J K. Scientific Reports, 2017, 7, 41935.
65 Vetrivendan E, Thendral G, Ravi Shankar A, et al. Materials and Manufacturing Processes, 2017, 32(10), 1435.
66 Ahmaniemi S, Vippola M, Vuoristo P, et al. Wear, 2002, 252(7-8), 614.
67 Vippola M, Ahmaniemi S, Keranen J, et al. Materials Science & Engineering A, 2002, 323(1-2), 1.
68 Shao F, Yang K, Zhao H Y, et al. Surface & Coatings Technology, 2015, 276, 8.
69 Vippola M, Vuoristo P, Lepistö T, et al. Journal of Materials Science Letters, 2003, 22(6), 463.
70 Singh H, Chata S S, Sidhu H S. Journal of Thermal Spray Technology, 2019, 28(7), 1478.
71 Jiao J, Luo Q, Wei X, et al. Journal of Alloys and Compounds, 2017, 714, 356.
72 Van T N, Nguyen T A, Pham H T, et al. Journal of Thermal Spray Technology, DOI: 10.1007/s11666-021-01263-2.
73 Wang Q, Ramachandran C S, Smith G M, et al. Tribology International, 2017, 116, 431.
74 Edward M P. Metal Finishing, 2008, 106(1), 34.
75 Zeng R C, Sun Z F, Chen J, et al. In: Fifth International Conference on Surface Engineering. Dalian, China, 2008, pp. 66.
76 Lin B L, Lu J T, Gang K. Surface & Coatings Technology, 2008, 202(9), 1831.
77 Wang Y, Jiang S L, Jiang S L, et al. Surface & Coatings Technology, 2011, 206(6), 1307.
78 Armada S, Tilset B G, Pilz M, et al. Journal of Thermal Spray Technology, 2011, 20(4), 918.
79 Toorani M, Aliofkhazraei M. Surfaces and Interfaces, 2019, 14, 262.
80 Farshid S, Kharaziha M. Journal of Magnesium and Alloys, 2021, 9(5), 1487.
81 Zheng X, Liu Q, Ma H, et al. Surface and Coatings Technology, 2018, 347, 286.
82 Liu M M, Hu H X, Zheng Y G, et al. Surface & Coatings Technology, 2019, 367, 311.
83 Sopchenski L, Robert J, Touzin M, et al. Surface & Coatings Technology, 2021, 417, 127195.
84 Amousoltani N, Salimijazi H, Golozar M. Materials Research Express, 2020, 7(1), 016410.
85 Hu N P, Dong X C, He X Y, et al. Corrosion Science, 2015, 97, 17.
86 Ding Z F, Smith B A, Hebert R R, et al. Surface & Coatings Technology, 2018, 350, 31.
87 Li L J, Lei J L, Yu S H, et al. Journal of Rare Earths, 2008, 26(3), 383.
88 Gonzalez-Garcia Y, Gonzalez S, Souto R M. Corrosion Science, 2007, 49(9), 3514.
89 Thi H P, Van T N, Nguyen T A, et al. Journal of Thermal Spray Technology, 2021, 30, 716.
90 Knuuttila J, Sorsa P, Mntyl T, et al. Journal of Thermal Spray Technology, 1999, 8(2), 249.
91 Erik O E. Journal of the American Ceramic Society, 1996, 79(2), 333.
92 Rozga P. In: 2018 IEEE International Conference on High Voltage Engineering and Application. Greece, 2018, pp. 1.
93 Troczynski T, Yang Q, Jhon G. Journal of Thermal Spray Technology, 1999, 8(2), 229.
94 Chu C L, Han X, Xue F, et al. Applied Surface Science, 2013, 271(15), 271.
95 Si L Q, Wang Z H, Zhou Z H, et al. Rare Metal Materials and Enginee-ring, 2012, 41, 223.
96 Zhang Y Q, Hong S, Lin L, et al. Coatings, 2019, 9(11), 724.
97 Liu M M, Hu H X, Zheng Y G. Surface & Coatings Technology, 2017, 309, 579.
98 Yang Y, Zhang J, Wei G, et al. Hot Working Technology, 2017, 46(6), 152(in Chinese).
杨艳, 张佳, 魏刚, 等. 热加工工艺, 2017, 46(6), 152.
99 Gonzalez-Garcia Y, Gonzalez S, Souto R M. Corrosion Science, 2007, 49(9), 3514.
100 Kim H J, Odoul S, Lee C H, et al. Surface & Coatings Technology, 2001, 140(3), 293.
[1] 胡哲, 刘清风. 荷载作用下开裂混凝土中多离子传输的数值研究[J]. 材料导报, 2023, 37(9): 21120077-9.
[2] 刘晓英, 阮文琳, 张育新, 饶劲松, 尹长青, 张贤明, 柳云骐. 无机-有机杂化微胶囊:制备技术及在抗磨耐腐蚀涂层中的应用[J]. 材料导报, 2023, 37(9): 21060113-9.
[3] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[4] 赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
[5] 张华, 李梦冉, 徐澎鹏, 李晶晶, 张学斌, 刘伟, 汪金芝, 苏海林. 二级颗粒粒径对颗粒级配软磁粉芯磁性能的影响[J]. 材料导报, 2023, 37(18): 22020065-5.
[6] 李少鹏, 王德芳, 谢文玲, 李秀兰, 李轩. 一步法反应时间对AZ91镁合金表面超疏水涂层耐腐蚀性的影响[J]. 材料导报, 2023, 37(18): 22010063-6.
[7] 赵建华, 金荣华, 纪秀林, 段天泽, 庄曙东, 赵占西. Al含量对CoCrFeNiTi0.5高熵合金涂层耐冲蚀和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(17): 22030061-6.
[8] 徐鹏辉, 王胜民, 乐林江, 肖敏, 赵晓军. 温度和甲酸镍含量对制备Zn-Ni合金渗层的影响[J]. 材料导报, 2023, 37(16): 21120065-8.
[9] 苏丽, 牛荻涛, 黄大观, 张云升, 乔宏霞. 增强珊瑚骨料混凝土毛细吸水性能与预测模型[J]. 材料导报, 2023, 37(15): 22010023-8.
[10] 张爵灵, 王林山, 郑逢时, 胡强, 汪礼敏. 粉末冶金多孔铝的研究进展[J]. 材料导报, 2023, 37(12): 21100151-8.
[11] 罗圆, 王献, 赵君, 胡昌义, 张大伟, 魏燕, 张诩翔, 蔡宏中. Pt-Co-Mn合金组织结构及性能研究[J]. 材料导报, 2023, 37(10): 21060215-5.
[12] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[13] 张书弟, 何欢欢, 许宇恒, 徐阳. AZ91D镁合金锰系磷酸盐转化膜的研究:磷化液各组分及含量对耐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 22010229-6.
[14] 姚维, 郑伯坤, 邱景平, 黄腾龙, 尹旭岩. 外加剂对膨胀充填材料性能的影响[J]. 材料导报, 2022, 36(Z1): 20070045-5.
[15] 刘方, 张昆昆, 罗滔, 马卫卫, 蒋伟. 复杂环境因素下纳米改性混凝土冻融损伤研究[J]. 材料导报, 2022, 36(8): 20100024-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed