Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 21100115-5    https://doi.org/10.11896/cldb.21100115
  无机非金属及其复合材料 |
磷酸改性钢渣粉复合氢氧化钙浆体早期水化与微观结构
霍彬彬1,2, 陈春1, 张亚梅1,*
1 东南大学材料科学与工程学院,江苏省土木工程材料重点实验室,南京 211189
2 中国矿业大学矿业工程学院,煤炭资源与安全开采国家重点实验室,江苏 徐州 221116
Early-age Hydration and Microstructure of Phosphoric Acid Modified Steel Slag Powder Blended Portlandite Pastes
HUO Binbin1,2,CHEN Chun1, ZHANG Yamei1,*
1 Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2 State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
下载:  全 文 ( PDF ) ( 25336KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究磷酸改性钢渣粉在碱性水泥环境中早期水化能力的变化,对比研究了未改性与磷酸改性钢渣粉复合氢氧化钙浆体的水化热、水化产物与微观结构变化。结果表明:相比未改性钢渣粉复合氢氧化钙浆体,磷酸改性钢渣粉复合氢氧化钙浆体的水化放热峰前移并且放热速率升高,72 h水化放热量提升了16.8%;其在3 d、7 d和28 d时消耗更多的氢氧化钙,产生更多水化产物,导致浆体孔隙率下降。但由于磷酸根对活性硅酸盐矿物水化的延缓作用,磷酸改性钢渣复合氢氧化钙浆体的孔隙率由3 d水化至28 d时的下降程度弱于未改性组。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
霍彬彬
陈春
张亚梅
关键词:  钢渣粉  磷酸  改性  氢氧化钙  水化  微观结构    
Abstract: Aiming to investigate the early-age hydration ability change ofphosphoric acid (PA) modified steel slag powder (SS) under alkaline cement environment, the hydration heat evolution, hydrates, and microstructure of the phosphoric acid modified SS (SSPA) and unmodified SS blended portlandite pastes were compared in this investigation. It is found that compared to SS blended portlandite pastes, the heat release peak of SSPA blended portlandite paste moves forward and accompanies with higher heat release value, resulting in an improvement of 16.8% in 72 h cumulative hydration heat. Additionally, SSPA blended portlandite paste consumes more content of portlandite at 3 d, 7 d and 28 d, produces less pore and more hydrates. While due to the retard effect of PO43- to the active calcium silicates, the decreased porosity in SSPA blended portlandite pastes from 3 d to 28 d is lower than that of the SS blended portlandite pastes.
Key words:  steel slag powder    phosphoric acid    modification    calcium hydroxide    hydration    microstructure
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51778132;51972057)
通讯作者:  * 张亚梅,东南大学结构工程专业博士,东南大学材料科学与工程学院教授、博士研究生导师、副院长,江苏省先进土木工程材料协同创新中心副主任,2015 年东南大学“十佳导师”。1990 年毕业于东南大学土木系获学士学位,1998 年毕业于东南大学材料系获博士学位。曾任江苏省土木工程材料重点实验室常务副主任。现为 ACI CC(美国混凝土学会中国分会)理事,SAC(中国国家标准化委员会)注册 ISO TC71 专家,中国混凝土与水泥制品协会固废分会建筑固废专委会主任委员,中国土木工程学会再生混凝土分会副主任委员,中国硅酸盐学会水泥化学分会委员,中国混凝土与水泥制品协会预制混凝土构件分会理事,fib(The International Federation for Structural Concrete) TG3.10 委员,fib com.9委员。日本可持续发展协会客座研究员。负责或参与国家自然科学基金项目、973 项目子题、重大工程技术攻关项目及企业合作项目等 40 多项;曾获教育部科技进步二等奖、华夏建设科技一等奖等。研究方向:固体废弃物的资源化利用技术,碱激发胶凝材料,建筑节能新材料,高性能纤维增强水泥基复合材料,3D打印混凝土等。ymzhang@seu.edu.cn   
作者简介:  霍彬彬,2021年9月毕业于东南大学,获得工学博士学位。现为中国矿业大学矿业工程学院师资博士后。目前主要研究领域为固体废弃物用作水泥矿物掺合料和充填材料。
引用本文:    
霍彬彬, 陈春, 张亚梅. 磷酸改性钢渣粉复合氢氧化钙浆体早期水化与微观结构[J]. 材料导报, 2023, 37(15): 21100115-5.
HUO Binbin,CHEN Chun, ZHANG Yamei. Early-age Hydration and Microstructure of Phosphoric Acid Modified Steel Slag Powder Blended Portlandite Pastes. Materials Reports, 2023, 37(15): 21100115-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100115  或          http://www.mater-rep.com/CN/Y2023/V37/I15/21100115
1 Wen Y A, Zm A, Mz A, et al. Chemical Engineering Journal, 2020, 381, 122547.
2 Nielsen P, Boone M, Horckmans L, et al. Journal of CO2 Utilization, 2019, 36, 124.
3 Benhelal E, Zahedi G, Shamsaei E, et al. Journal of Cleaner Production, 2013, 51(1), 142.
4 Wang H, Qi T, Feng G, et al. Construction and Building Materials, 2021, 280(28), 122553.
5 Wang A, He M, Mo L, et al. Materials Reports, 2019, 33(17), 2939(in Chinese).
王爱国, 何懋灿, 莫立武, 等. 材料导报, 2019, 33(17), 2939.
6 Hou X, Xu D, Xue B, et al. Journal of Building Materials, 2012, 15(5), 588 (in Chinese).
侯新凯, 徐德龙, 薛博, 等. 建筑材料学报, 2012, 15(5), 588.
7 Neerka V, Bíl P, Hrbek V, et al. Cement and Concrete Composites, 2019, 103, 252.
8 Guo J, Bao Y, Wang M. Waste Management, 2018, 78, 318.
9 Wang Q, Yan P, Yang J, et al. Construction and Building Materials, 2013, 47, 1414.
10 Li B, Wang Y, Yang L, et al. Journal of Sustainable Cement-Based Materials, 2019, 8(6), 353.
11 Salman M, Cizer Ö, Pontikes Y, et al. Journal of Hazardous Materials, 2015, 286, 211.
12 Li J, Yu Q, Wei J, et al. Cement and Concrete Research, 2011, 41(3), 324.
13 Kriskova L, Pontikes Y, Pandelaers L, et al. Metallurgical and Materials Transactions B, 2013, 44(5), 1173.
14 Huo B, Li B, Huang S, et al. Construction and Building Materials, 2020, 254, 119319.
15 Huo B, Li B, Chen C, et al. Construction and Building Materials, 2021, 280, 122500.
16 Huo B, Li B, Chen C, et al. Journal of the Chinese Ceramic Society, 2021, 49(5), 948(in Chinese).
霍彬彬, 李保亮, 陈春, 等. 硅酸盐学报, 2021, 49(5), 948.
17 Huo B, Li B, Chen C, et al. Construction and Building Materials, 2021, 307, 125004.
18 Mejdi M, Wilson W, Saillio M, et al. Cement and Concrete Research, 2019, 123, 105790.
19 Kocaba V, Gallucci E, Scrivener K L. Cement and Concrete Research, 2012, 42(3), 511.
20 Lothenbach B, Le S G, Gallucci E, et al. Cement and Concrete Research, 2008, 38(6), 848.
21 Durdzinski P T, Dunant C F, Haha M B, et al. Cement and Concrete Research, 2015, 73, 111.
22 Wang Q, Yan P, Feng J. Journal of Hazardous Materials, 2011, 186(2-3), 1070.
23 Jiang Y, Ling T C, Shi C, et al. Resources, Conservation and Recycling, 2018, 136, 187.
24 Zhao J, Yan P, Wang D. Journal of Cleaner Production, 2017, 156, 50.
25 Li Z, Zhao S, Zhao X, et al. Journal of Hazardous Materials, 2012, 199, 448.
26 Chen Z, Li R, Zheng X, et al. Cement and Concrete Research, 2021, 139, 106271.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[3] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[4] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[5] 唐芮枫, 张佳乐, 王子明, 崔素萍, 王肇嘉, 兰明章. C-S-H纳米晶种及其对水泥水化硬化的促进作用综述[J]. 材料导报, 2023, 37(9): 21090259-16.
[6] 刘晓, 谢辉, 罗奇峰, 王子明, 崔素萍, 郭金波, 张冠华. 三乙醇胺对液体无碱速凝剂“促-抑”水泥早期水化的调控机理研究[J]. 材料导报, 2023, 37(9): 21100165-6.
[7] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[8] 刘圣洁, 林钰, 李梦然, 周胜波. 基于MSCR试验的温拌阻燃沥青高温性能评价与分级[J]. 材料导报, 2023, 37(9): 21060064-6.
[9] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[10] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[11] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[12] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[13] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[14] 孙滢斐, 张攀, 胡敬平, 杨家宽, 侯慧杰. 地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023, 37(7): 21080091-7.
[15] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed