Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 21100100-8    https://doi.org/10.11896/cldb.21100100
  金属与金属基复合材料 |
含空洞镍基单晶高温合金力学性能的分子动力学研究
董会苁1, 杨柳1, 耿长建2, 苏孺1,*, 刘猛3
1 河北科技大学材料科学与工程学院,石家庄 050000
2 中国航发沈阳发动机研究所,沈阳 110015
3 中航上大高温合金材料股份有限公司,河北 邢台 054800
Molecular Dynamics Study on Mechanical Properties of Nickel-based Single Crystal Superalloys Containing Voids
DONG Huicong1, YANG Liu1, GENG Changjian2, SU Ru1,*, LIU Meng3
1 School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
2 China Aviation Development Shenyang Engine Research Institute, Shenyang 110015, China
3 AVIC Shangda Superalloy Materials Limited Company, Xingtai 054800,Hebei, China
下载:  全 文 ( PDF ) ( 46293KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镍基单晶高温合金因其优异的性能在航空航天方面应用广泛,但是在制造过程中,不可避免有空洞缺陷的产生,从而影响合金力学性能。通过分子动力学模拟研究温度、应变速率和空洞形状对镍基单晶高温合金拉伸力学性能和位错演化的影响。结果表明:温度和应变速率影响材料力学性能,温度增加,杨氏模量减小,屈服强度减小,材料强度降低;应变速率增加,材料的杨氏模量不变,屈服强度增大。此外,空洞的存在降低了材料的强度和杨氏模量。不同形状空洞对杨氏模量影响相同,对材料强度的影响不同。菱形空洞模型由于存在锐角,位错更容易聚集,屈服强度更小,在拉伸过程中更容易断裂变形。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董会苁
杨柳
耿长建
苏孺
刘猛
关键词:  镍基单晶高温合金  分子动力学模拟  空洞  力学性能  位错演化    
Abstract: Nickel-based single crystal superalloys have been widely used in aerospace due to their superior properties, but there are inevitable void defects in the manufacturing process, which affect the mechanical properties of the alloy. The effects of temperature, strain rate and void shape on the tensile mechanical properties and dislocation evolution of nickel-based single crystal superalloy have been studied by molecular dynamics simulation. Results show that temperature and strain rate affect the mechanical properties of materials. With the increase of temperature, Young's modulus, yield strength and material strength are all decreased;With the increase of strain rate, the young's modulus of the material remains unchanged and the yield strength increases. In addition, the presence of voids reduces the strength and Young's modulus of the material. Young's modulus of models with different shapes of voids is the same, while strength of those is different. Due to the acute angle of the diamond-shaped void, the dislocations are more likely to aggregate, the yield strength is smaller, and it is more likely to be broken during the stretching process.
Key words:  nickel-based single crystal superalloy    molecular dynamics simulation    voids    mechanical property    dislocation evolution
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  V232.4  
  O346.3  
基金资助: 2020年河北省重点研究项目(JMRH2020-27);河北省省级科技计划资助(20311007D);河北省重点研发计划项目(22351008D);河北省重点项目(SJMYF2022X04)
通讯作者:  * 苏孺,副教授、河北科技大学牧星学者,2009年于河北科技大学材料学院本科毕业,2009—2015年于北京理工大学材料学院获博士学位,自2015年12月至今,在河北科技大学材料科学与工程学院金属材料工程系工作,主要从事金属材料残余应力测量与控制、金属材料形变与损伤、第一性原理计算与分子动力学模拟等方面的研究工作。利用同步辐射X射线、中子散射、便携式X射线残余应力仪,系统研究了工程应用中多尺度应力演化为主导的服役可靠性评估技术,并在航空、航天、高铁等领域得到应用。主持科研项目10余项,其中包括国家自然科学基金青年基金、河北省科技重点项目、军委装备部装备预研基金、河北省自然科学基金等。以第一/通信作者在Acta Materialia、Applied Physics Letters等国际知名期刊上发表多篇论文。sxru2008@163.com   
作者简介:  董会苁,河北科技大学材料学院讲师、硕士研究生导师。2012年于河北科技大学金属材料与工程专业本科毕业,2012—2017年于燕山大学亚稳材料国家重点实验室进行硕博连读,博士毕业后到河北科技大学工作至今。目前主要从事高温合金力学性能及半导体材料热传导性能等方面的计算机模拟工作。以第一作者或通信作者身份发表论文10余篇,包括Physical Chemistry Chemical Physics、Materials Science and Engineering:C、Journal of Materials Research and Technology、Materials Letters等。
引用本文:    
董会苁, 杨柳, 耿长建, 苏孺, 刘猛. 含空洞镍基单晶高温合金力学性能的分子动力学研究[J]. 材料导报, 2023, 37(15): 21100100-8.
DONG Huicong, YANG Liu, GENG Changjian, SU Ru, LIU Meng. Molecular Dynamics Study on Mechanical Properties of Nickel-based Single Crystal Superalloys Containing Voids. Materials Reports, 2023, 37(15): 21100100-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100100  或          http://www.mater-rep.com/CN/Y2023/V37/I15/21100100
1 Wang X M, Hui Y Z, Hou Y Y, et al. Mechanics of Materials, 2019, 136, 103068.
2 Xie H X, Wang C Y, Yu T. Modelling and Simulation in Materials Science and Engineering, 2009, 17(5), 055007.
3 Huang S, Huang M, Li Z. International Journal of Plasticity, 2018, 110, 1.
4 He Z, Zhang Y, Qiu W, et al. Materials Science and Engineering:A, 2016, 676, 246.
5 Huang M, Cheng Z, Xiong J, et al. Acta Materialia, 2014, 76, 294.
6 Zhao G, Tian S, Zhang S, et al. Progress in Natural Science:Materials International, 2019, 29(2), 210.
7 Luo Z P, Wu Z T, Miller D J. Materials Science and Engineering:A, 2003, 354(1-2), 358.
8 Birosca S, Liu G, Ding R, et al. International Journal of Plasticity, 2019, 118, 252.
9 Xiong L, McDowell D L , Chen Y. Scripta Materialia, 2012, 67 (7-8), 633.
10 Farrissey L, Ludwig M, McHugh P E, et al. Computational Materials Science, 2000, 18 (1), 102.
11 Zhang Y, Jiang S, Zhu X, et al. Physics Letters A, 2016, 380(35), 2757.
12 Zhu T, W C Y. Chinese Physics, 2006, 15(9), 2087.
13 Li N L, Wu W P, Nie K. Physics Letters A, 2018, 382 (20), 1361.
14 Huang J F, Wang Z L, Yang E F, et al. International Journal of Automation and Computing, 2016, 14 (1), 68.
15 Khoei A R, Youzi M, Eshlaghi G T. Mechanics of Materials,DOI:10. 1016/j. mechmat. 2022. 104368.
16 Simar A, Voigt H J L, Wirth B D. Computational Materials Science, 2011, 50(5), 1811.
17 Zhang Y, Jiang S, Zhu X, et al. Physica E:Low-dimensional Systems and Nanostructures, 2017, 90, 90.
18 Li Y C, Jiang W G, Zhou Y. Acta Metallurgica Sinica, 2020, 56(5), 776 (in Chinese).
李源才, 江五贵, 周宇. 金属学报, 2020, 56(5), 776.
19 Bachurin D V. Solid State Communications, 2018, 275, 43.
20 Zhang Y, Jiang S, Zhu X, et al. Journal of Physics & Chemistry of Solids, 2016, 98, 220.
21 Wang J P, Liang JW, Wen Z X, et al. Computational Materials Science, 2019, 160, 245.
22 Liu H, Wang X M, Liang H, et al. International Journal of Solids and Structures, 2020, 191, 464.
23 Mishin Y. Acta Materialia, 2004, 52(6), 1451.
24 Mishin Y, Mehl M J, Papaconstantopoulos D A. Physical Review B, 2002, 65(22), 224114.
25 Pun G P, Mishin Y. Philosophical Magazine Series 1, 2009, 89(34), 3245.
26 Frédéric H, Flynn W, Aruna P, et al. Metallurgical and Materials Transactions A, 2018, 49, 4158.
27 Zhu Y, Li Z, Huang M. Computational Materials Science, 2013, 70(70), 178.
28 RaoS I, Dimiduk D M, El-Awady J A, et al. Acta Materialia, 2015, 101, 10.
29 Tao Y L, Zhao D, Liu G W, et al. Journal of Jilin University:Information Science Edition, 2010, 28(4), 414 (in Chinese).
陶永兰, 赵冬, 刘广武, 等. 吉林大学学报:信息科学版, 2010, 28(4), 414.
30 Zhao K J, Chen C Q, Shen Y P, et al. Computational Materials Science, 2009, 46(3), 749.
31 Wang X J, Zhu B Q, Wang H M. Journal of System Simulation, 2010, 22 (2), 534 (in Chinese).
王晓娟, 朱宝全, 王红梅. 系统仿真学报, 2010, 22(2), 534.
32 Liu X B, Xiong Z, Fang Z, et al. Chinese Journal of Nonferrous Metals, 2018, 28(9), 1746 (in Chinese).
刘晓波, 熊震, 方洲, 等. 中国有色金属学报, 2018, 28(9), 1746.
33 Shang J, Yang F, Li C, et al. Computational Materials Science, 2018, 148, 200.
34 Li Y C, Jiang W G, Zhou Y. Rare metal Materials and Engineering, 2020, 49 (7), 2372 (in Chinese).
李源才, 江五贵, 周宇. 稀有金属材料与工程, 2020, 49(7), 2372.
35 Chandra S, Samal M K, Kapoor R, et al. Materials Science and Engineering:A, 2018, 735, 19.
36 Yang P F. Simulation study on tensile mechanical properties and deformation mechanism of Ni-Co alloy. Master's Thesis, Lanzhou University of Technology, China, 2020 (in Chinese).
杨攀峰. Ni-Co合金拉伸力学性能和变形机制的模拟研究. 硕士学位论文, 兰州理工大学, 2020.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[3] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[4] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[5] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[6] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[7] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[8] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[9] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[10] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[11] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[12] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[13] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[14] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[15] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed