Molecular Dynamics Study on Mechanical Properties of Nickel-based Single Crystal Superalloys Containing Voids
DONG Huicong1, YANG Liu1, GENG Changjian2, SU Ru1,*, LIU Meng3
1 School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China 2 China Aviation Development Shenyang Engine Research Institute, Shenyang 110015, China 3 AVIC Shangda Superalloy Materials Limited Company, Xingtai 054800,Hebei, China
Abstract: Nickel-based single crystal superalloys have been widely used in aerospace due to their superior properties, but there are inevitable void defects in the manufacturing process, which affect the mechanical properties of the alloy. The effects of temperature, strain rate and void shape on the tensile mechanical properties and dislocation evolution of nickel-based single crystal superalloy have been studied by molecular dynamics simulation. Results show that temperature and strain rate affect the mechanical properties of materials. With the increase of temperature, Young's modulus, yield strength and material strength are all decreased;With the increase of strain rate, the young's modulus of the material remains unchanged and the yield strength increases. In addition, the presence of voids reduces the strength and Young's modulus of the material. Young's modulus of models with different shapes of voids is the same, while strength of those is different. Due to the acute angle of the diamond-shaped void, the dislocations are more likely to aggregate, the yield strength is smaller, and it is more likely to be broken during the stretching process.
作者简介: 董会苁,河北科技大学材料学院讲师、硕士研究生导师。2012年于河北科技大学金属材料与工程专业本科毕业,2012—2017年于燕山大学亚稳材料国家重点实验室进行硕博连读,博士毕业后到河北科技大学工作至今。目前主要从事高温合金力学性能及半导体材料热传导性能等方面的计算机模拟工作。以第一作者或通信作者身份发表论文10余篇,包括Physical Chemistry Chemical Physics、Materials Science and Engineering:C、Journal of Materials Research and Technology、Materials Letters等。
引用本文:
董会苁, 杨柳, 耿长建, 苏孺, 刘猛. 含空洞镍基单晶高温合金力学性能的分子动力学研究[J]. 材料导报, 2023, 37(15): 21100100-8.
DONG Huicong, YANG Liu, GENG Changjian, SU Ru, LIU Meng. Molecular Dynamics Study on Mechanical Properties of Nickel-based Single Crystal Superalloys Containing Voids. Materials Reports, 2023, 37(15): 21100100-8.
1 Wang X M, Hui Y Z, Hou Y Y, et al. Mechanics of Materials, 2019, 136, 103068. 2 Xie H X, Wang C Y, Yu T. Modelling and Simulation in Materials Science and Engineering, 2009, 17(5), 055007. 3 Huang S, Huang M, Li Z. International Journal of Plasticity, 2018, 110, 1. 4 He Z, Zhang Y, Qiu W, et al. Materials Science and Engineering:A, 2016, 676, 246. 5 Huang M, Cheng Z, Xiong J, et al. Acta Materialia, 2014, 76, 294. 6 Zhao G, Tian S, Zhang S, et al. Progress in Natural Science:Materials International, 2019, 29(2), 210. 7 Luo Z P, Wu Z T, Miller D J. Materials Science and Engineering:A, 2003, 354(1-2), 358. 8 Birosca S, Liu G, Ding R, et al. International Journal of Plasticity, 2019, 118, 252. 9 Xiong L, McDowell D L , Chen Y. Scripta Materialia, 2012, 67 (7-8), 633. 10 Farrissey L, Ludwig M, McHugh P E, et al. Computational Materials Science, 2000, 18 (1), 102. 11 Zhang Y, Jiang S, Zhu X, et al. Physics Letters A, 2016, 380(35), 2757. 12 Zhu T, W C Y. Chinese Physics, 2006, 15(9), 2087. 13 Li N L, Wu W P, Nie K. Physics Letters A, 2018, 382 (20), 1361. 14 Huang J F, Wang Z L, Yang E F, et al. International Journal of Automation and Computing, 2016, 14 (1), 68. 15 Khoei A R, Youzi M, Eshlaghi G T. Mechanics of Materials,DOI:10. 1016/j. mechmat. 2022. 104368. 16 Simar A, Voigt H J L, Wirth B D. Computational Materials Science, 2011, 50(5), 1811. 17 Zhang Y, Jiang S, Zhu X, et al. Physica E:Low-dimensional Systems and Nanostructures, 2017, 90, 90. 18 Li Y C, Jiang W G, Zhou Y. Acta Metallurgica Sinica, 2020, 56(5), 776 (in Chinese). 李源才, 江五贵, 周宇. 金属学报, 2020, 56(5), 776. 19 Bachurin D V. Solid State Communications, 2018, 275, 43. 20 Zhang Y, Jiang S, Zhu X, et al. Journal of Physics & Chemistry of Solids, 2016, 98, 220. 21 Wang J P, Liang JW, Wen Z X, et al. Computational Materials Science, 2019, 160, 245. 22 Liu H, Wang X M, Liang H, et al. International Journal of Solids and Structures, 2020, 191, 464. 23 Mishin Y. Acta Materialia, 2004, 52(6), 1451. 24 Mishin Y, Mehl M J, Papaconstantopoulos D A. Physical Review B, 2002, 65(22), 224114. 25 Pun G P, Mishin Y. Philosophical Magazine Series 1, 2009, 89(34), 3245. 26 Frédéric H, Flynn W, Aruna P, et al. Metallurgical and Materials Transactions A, 2018, 49, 4158. 27 Zhu Y, Li Z, Huang M. Computational Materials Science, 2013, 70(70), 178. 28 RaoS I, Dimiduk D M, El-Awady J A, et al. Acta Materialia, 2015, 101, 10. 29 Tao Y L, Zhao D, Liu G W, et al. Journal of Jilin University:Information Science Edition, 2010, 28(4), 414 (in Chinese). 陶永兰, 赵冬, 刘广武, 等. 吉林大学学报:信息科学版, 2010, 28(4), 414. 30 Zhao K J, Chen C Q, Shen Y P, et al. Computational Materials Science, 2009, 46(3), 749. 31 Wang X J, Zhu B Q, Wang H M. Journal of System Simulation, 2010, 22 (2), 534 (in Chinese). 王晓娟, 朱宝全, 王红梅. 系统仿真学报, 2010, 22(2), 534. 32 Liu X B, Xiong Z, Fang Z, et al. Chinese Journal of Nonferrous Metals, 2018, 28(9), 1746 (in Chinese). 刘晓波, 熊震, 方洲, 等. 中国有色金属学报, 2018, 28(9), 1746. 33 Shang J, Yang F, Li C, et al. Computational Materials Science, 2018, 148, 200. 34 Li Y C, Jiang W G, Zhou Y. Rare metal Materials and Engineering, 2020, 49 (7), 2372 (in Chinese). 李源才, 江五贵, 周宇. 稀有金属材料与工程, 2020, 49(7), 2372. 35 Chandra S, Samal M K, Kapoor R, et al. Materials Science and Engineering:A, 2018, 735, 19. 36 Yang P F. Simulation study on tensile mechanical properties and deformation mechanism of Ni-Co alloy. Master's Thesis, Lanzhou University of Technology, China, 2020 (in Chinese). 杨攀峰. Ni-Co合金拉伸力学性能和变形机制的模拟研究. 硕士学位论文, 兰州理工大学, 2020.