Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 21120172-6    https://doi.org/10.11896/cldb.21120172
  表面工程材料与技术 |
冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究
于天阳1, 马国政1, 郭伟玲1, 何鹏飞2, 黄艳斐1, 刘明1, 王海斗1,3
1 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
2 军事科学院国防科技创新研究院,北京 100071
3 陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
Microstructure and Properties of Cold Sprayed Cu-Ti3SiC2 Composite Coatings with Different Ceramic Contents
YU Tianyang1, MA Guozheng1, GUO Weiling1, HE Pengfei2, HUANG Yanfei1, LIU Ming1, WANG Haidou1,3
1 National Key Laboratory for Remanufacturing, Army Armored Force Academy, Beijing 100072, China
2 Defense Innovation Institute, Academy of Military Science, Beijing 100071, China
3 National Engineering Research Center for Remanufacturing, Army Armored Force Academy, Beijing 100072, China
下载:  全 文 ( PDF ) ( 8529KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为获得摩擦学性能优良的金属-陶瓷复合涂层,采用冷喷涂技术在铜合金上制备了不同陶瓷含量的Cu-Ti3SiC2复合涂层。通过扫描电镜、纳米压痕仪、电子万能试验机、往复式摩擦试验机等对不同陶瓷含量的Cu-Ti3SiC2复合涂层进行了组织结构、力学性能和摩擦学性能的表征、分析。研究发现,Cu-Ti3SiC2复合涂层与对7075铝合金干摩擦过程中的主要磨损机制是粘着磨损,耐磨性能较好的涂层主要有两个特点:一是具备较好的力学性能,抗塑性变形能力较强;二是Ti3SiC2含量较高,可有效减少摩擦过程中Al的粘着。陶瓷含量过高时涂层内聚强度降低,相应力学和摩擦学性能下降。结果表明,适当增加陶瓷可有效提高涂层的致密度、结合强度,提升涂层的力学性能,增强涂层的耐磨性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于天阳
马国政
郭伟玲
何鹏飞
黄艳斐
刘明
王海斗
关键词:  冷喷涂  铜基复合涂层  微观组织  力学性能  摩擦学性能    
Abstract: In order to obtain metal-ceramic composite coatings with excellent tribological properties, Cu-Ti3SiC2 composite coatings with different ceramic contents were prepared on copper alloy by cold spraying technology. The microstructure, mechanical properties and tribological properties of Cu-Ti3SiC2 composite coatings with different ceramic contents were characterized and analyzed by scanning electron microscope, nano indentation instrument, electronic universal testing machine and reciprocating friction test. The main wear mechanism between Cu-Ti3SiC2 composite coating and 7075Al alloy is adhesive wear during dry friction. The coating with better wear resistance has two main characteristics, as follow: first, it has better mechanical properties and stronger plastic deformation resistance; second, Ti3SiC2 content is high, which can effectively reduce the adhesion of Al in the friction process.It is found that proper ceramic content can effectively improve the mechanical properties of the coa-ting, reduce the porosity of the coating and enhance the wear resistance of the coating.
Key words:  cold spraying    copper-base composite coating    microstructure    mechanical properties    tribological property
发布日期:  2022-04-07
ZTFLH:  TG174.442  
基金资助: 国家自然科学基金(52122508;52005511;52130509)
通讯作者:  magz0929@163.com   
作者简介:  于天阳,2012年6月于西南政法大学获得管理学学士学位。现为陆军装甲兵学院硕士研究生,在马国政副研究员的指导下进行研究。目前主要研究领域为导电耐磨自润滑涂层。
马国政,陆军装甲兵学院装备再制造技术国防科技重点实验室副研究员。2008年西北工业大学材料成型及控制工程专业本科毕业,2014年解放军装甲兵工程学院材料加工工程专业博士毕业后留校工作至今,2016年入选中国科协青年人才托举工程,2021年获得国家自然科学基金优秀青年科学基金。目前主要从事装备极端工况摩擦学和表面强化改性涂层等方面的研究工作。发表论文100余篇,包括Nano Letters,ACS Applied Materials & Interfaces,Journal of Materials Science & Techonlogy等。
引用本文:    
于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
YU Tianyang, MA Guozheng, GUO Weiling, HE Pengfei, HUANG Yanfei, LIU Ming, WANG Haidou. Microstructure and Properties of Cold Sprayed Cu-Ti3SiC2 Composite Coatings with Different Ceramic Contents. Materials Reports, 2022, 36(7): 21120172-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120172  或          http://www.mater-rep.com/CN/Y2022/V36/I7/21120172
1 Tan K, Markovych S, Hu W, et al. Aerospace Technic and Technology, 2021(1), 47.
2 Zhang L, Yang S, Lv X, et al. Journal of Thermal Spray Technology, 2019, 28(6), 1212.
3 Huang C J, Wu H J, Xie Y C, et al. Surface & Coatings Technology, 2019, 371, 211.
4 Zhang Y, Choudhuri D, Scharf T W, et al. Materials & Design, 2019, 182, 108009.
5 An S, Joshi B, Yarin A L, et al. Advanced Materials, 2020, 32(2), 1905028.
6 Zhang Y, Descartes S, Chromik R R.Tribology International, 2019, 134, 15.
7 Chen W, Yu Y, Tieu A K, et al. Tribology International, 2020, 142, 105992.
8 Li W Y, Assadi H, Gaertner F, et al. Critical Reviews in Solid State and Materials Sciences, 2019, 44(2), 109.
9 Xie X, Yin S, Raoelison R, et al. Journal of Materials Science & Technology, 2021, 86, 20.
10 Wang H T, Li C J, Yang G J, et al. Vacuum, 2008, 83(1), 146.
11 McCune R C, Papyrin A N, Hall J N, et al. In: ASM International, Materials Park, OH, United States, 1995.
12 Qiu X, Wang J, Tang J, et, et al. Surface & Coatings Technology, 2018, 350, 391.
13 Torgerson T B, Harris M D, Alidokht S A, et al. Surface & Coatings Technology, 2018, 350, 136.
14 Wang Q, Spencer K, Birbilis N, et al. Surface & Coatings Technology, 2010, 205(1), 50.
15 Lee H Y, Yu Y H, Lee Y C, et al. Journal of Thermal Spray Technology, 2004, 13(2), 184.
16 Shkodkin A, Kashirin A, Klyuev O, et al. Journal of Thermal Spray Technology, 2006, 15(3), 382.
17 He L, Hassani M.Journal of Thermal Spray Technology, 2020, 29(7), 1565.
18 Kumar S, Bodapati B R, Vinay G, et al. Surface & Coatings Technology, 2021, 420, 127318.
19 Li J C, Research of design and service performance of selflubricating coatings for spherical plain bearings. Master's Thesis, China University of Geosciences (Beijing), China, 2019(in Chinese).
李俊超. 关节轴承自润滑涂层设计与服役性能研究. 硕士学位论文, 中国地质大学(北京), 2019.
20 Fernandez R, Jodoin B.Journal of Thermal Spray Technology, 2018, 27(4), 603.
21 Xi H H, He P F, Wang H D, et al. International Journal of Refractory Metals and Hard Materials, 2020, 86, 105095.
[1] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[2] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[3] 陈文元, 谈辉, 程军, 朱圣宇, 杨军. 冷喷涂铜基复合涂层摩擦学性能研究进展与展望[J]. 材料导报, 2022, 36(7): 21080083-7.
[4] 许骏杰, 康嘉杰, 岳文, 周永宽, 朱丽娜, 付志强, 佘丁顺. 纳秒激光制备Fe基非晶合金涂层表面织构的疏水性研究[J]. 材料导报, 2022, 36(7): 21120134-6.
[5] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[6] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[7] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[8] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[9] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[10] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[11] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[12] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[13] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[14] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[15] 熊光耀, 李圣鑫, 李波, 沈明学. 面向低温环境的聚合物摩擦学性能及其改性研究进展[J]. 材料导报, 2022, 36(3): 20070001-6.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed