Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 490-497    
  高分子与聚合物基复合材料 |
纤维及织物基柔性可穿戴器件研究进展
马香钰, 夏广波, 邱琳琳, 董丽卡, 丁明乐, 杜平凡
浙江理工大学纺织科学与工程学院,杭州 310018
Research Progress of Fibers and Fabrics Based Flexible Wearable Devices
MA Xiangyu, XIA Guangbo, QIU Linlin, DONG Lika, DING Mingle, DU Pingfan
College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
下载:  全 文 ( PDF ) ( 11396KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,随着智能技术的迅速发展,可穿戴器件逐渐成为研究热点。在实际应用中,柔性的可穿戴器件具有更广阔的应用前景,尤其是以纤维和织物为基底制作的柔性器件为解决穿着舒适性、耐水洗性不佳及三维形变时与人体贴合性差等问题提供了基础,同时符合绿色环保的理念,具有现实的研究意义。本文介绍了几种典型的柔性可穿戴器件,并简要回顾了可穿戴设备的柔性化进程;概述了以纤维、织物为基底的柔性可穿戴器件的制备方法;对纤维/织物基器件进行了分类并综述了在柔性传感器、柔性能源器件、柔性电极等领域的最新应用,指出随着材料科学、纺织技术和微电子技术的融合发展,通过系统设计和一体成型构建纺织结构柔性器件是穿戴式产品进一步发展的客观需求和必然趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马香钰
夏广波
邱琳琳
董丽卡
丁明乐
杜平凡
关键词:  柔性可穿戴器件  纤维及织物基底  传感器  能源器件  电极    
Abstract: In recent years, the field of wearable devices has been becoming a research hotspot with the rapid development of intelligent technologies. In practical applications, flexible wearable devices, especially fiber/fabric-based devices, have broader prospects because they provide a new strategy for solving the problems such as poor comfortability, washability, and flexibility. Also, it is a better idea from the point of environmental protection. Therefore, the research is of great realistic significance. This paper introduces several typical flexible wearable devices first, and the advance in flexibility of wearable devices is briefly introduced as well. Then, the preparation methods and classification of fiber/fabric-based devices is overviewed. Finally, their latest applications in wearable fields such as flexible sensors, energy devices, and electrodes are reviewed in detail. In summary, with the integration of materials science, textile technology and microelectronics technology, to fabricate more textile-structured flexible devices through systematic design and integrated molding is an objective requirement and inevitable trend for the further development of wearable products.
Key words:  flexible wearable devices    fiber/fabric substrates    sensors    energy devices    electrodes
                    发布日期:  2020-07-01
ZTFLH:  TM914.4  
基金资助: 浙江省自然科学基金(LY18F050011);中国纺织工业联合会应用基础研究项目(J201801);国家级大学生创新创业训练计划项目(201810338024)
作者简介:  马香钰,本科毕业于嘉兴学院,获得非织造材料与工程学士学位。现为浙江理工大学材料与纺织学院硕士研究生,在杜平凡副教授的指导下进行研究,主要研究方向为纺织结构可穿戴柔性能源器件;夏广波,浙江理工大学材料与纺织学院本科生。主要研究方向为可穿戴柔性材料与器件、智能纺织品等。正在主持国家级大学生创新创业计划项目1项,参与中国纺织工业联合会应用基础研究项目1项;杜平凡,博士,浙江理工大学材料与纺织学院副教授、硕士生导师,浙江省高校中青年学科带头人。研究兴趣主要集中在纺织结构可穿戴柔性能源器件、智能纺织品、功能纺织品等方向。主持承担了国家自然科学基金、浙江省自然科学基金、中国纺织工业联合会应用基础研究项目等10多项科研项目;发表SCI/EI收录论文40篇;取得授权发明专利11项;博士论文获第三届“王善元优博基金”奖励;2018.01—2019.01,美国北卡州立大学访问学者。
引用本文:    
马香钰, 夏广波, 邱琳琳, 董丽卡, 丁明乐, 杜平凡. 纤维及织物基柔性可穿戴器件研究进展[J]. 材料导报, 2020, 34(Z1): 490-497.
MA Xiangyu, XIA Guangbo, QIU Linlin, DONG Lika, DING Mingle, DU Pingfan. Research Progress of Fibers and Fabrics Based Flexible Wearable Devices. Materials Reports, 2020, 34(Z1): 490-497.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/490
1 Rossi D D, Santa A D, Mazzoldi A. Materials Science and Engineering C,1999,7(1),31.
2 Kuhn H H, Kimbrell W C, Worrell G, et al.In: Annual Technical Conference-ANTEC,1991,pp.760.
3 Oh K W, Park H J, Kim S H. Journal of Applied Polymer Science,2003,88(5),1225.
4 Xue P, Tao X M, Yu T X, et al. Textile Research Journal,2004,74(10),929.
5 封顺天.信息通信技术,2014,8(3),52.
6 李艳.微型电脑应用,2018,34(10),68.
7 卢忠花,王卿璞,鲁海瑞,等.微纳电子技术,2014,51(11),685.
8 李扬.高科技与产业化,2013(10),82.
9 张莉.通讯世界,2015(15),250.
10 http://phone.cnmo.com/news/659471.html.
11 耿怡,安晖,李扬,等.电子科学技术,2014,1(2),238.
12 王栋,卿星,蒋海青,等.纺织学报,2018,39(5),150.
13 White A. USP patent,5423956,1995.
14 李昕.轻纺工业与技术,2013,42(6),51.
15 Liu Q, Wang B, Chen J, et al. Composites Part A: Applied Science & Manufacturing,2017,101,30.
16 Tao Y, Liu Q, Chen J, et al. Environmental Science & Technology,2016,50(14),7889.
17 Wang Y D, Qing X, Zhou Q, et al. Biosensors & Bioelectronics,2017,95,138.
18 Tao X M. Smart fibres, fabrics and clothing, Woodhead Publishing, UK,2001.
19 Paradiso R, Loriga G, Taccini N. IEEE Transactions on Information Technology in Biomedicine,2005,9,337.
20 Pasquale E, Lorussis F, Mazzoldi A, et al. IEEE Sensors Journal,2003,3,460.
21 Meyer J, Arnrich B, Schumm J, et al. Sensors Journal,2010,10(8),1391.
22 王非.多媒体世界,2002(10),32.
23 Zhang H, Tao X M, Wang S Y, et al. Textile Research Journal,2005,75(8),598.
24 Wang D, Sun G, Chiou B S. Macromolecular Materials & Engineering,2010,292(4),407.
25 中国纺织网.化纤与纺织技术,2018,47(4),30.
26 Tao X M. Handbook of smart textiles, Springer, Germany,2015.
27 曾天禹,黄显.科技导报,2017,35(2),19.
28 Zhang M C, Wang C Y, Wang H M, et al. Advanced Functional Mate-rials,2017,27(2),1604795.
29 娄正,沈国震.新材料产业,2017(10),55.
30 Heo J S, Eom J, Kim Y H, et al. Small,2017,14(3),1703034.
31 Gautschi G. Piezoelectric sensors, Springer, Germany,2002.
32 Jonckheere J D, Narbonneau F, Kinet D, et al. In: 30th Annual International IEEE EMBS Conference, Canada,2008,pp.5266.
33 马艳丽,刘茜,刘玮.传感器与微系统,2015,34(4),1.
34 黄文杰,左洪福.航空学报,2013,34(8),1786.
35 Kang T H. Textile-embedded sensors for flexible physiological monitoring. Ph.D. Thesis, Duke University, USA,2006.
36 Qu G X, Cheng J L, Li X D, et al. Advanced Materials,2016,28,3646.
37 Sun H, Xie S, Li Y, et al. Advanced Materials,2016,28,8431.
38 Xin M, Bin S, Shi C, et al. Energy Storage Materials,2019,16,597.
39 Wu C X, Kim T W, Li F S, et al. ACS Nano,2016,10(7),6449.
40 吴云,刘茜.棉纺织技术,2018,46(6),79.
[1] 董丽卡, 丁明乐, 庄志山, 夏广波, 邓倩囡, 邱琳琳, 杜平凡. 柔性及纺织基钙钛矿太阳能电池的研究进展[J]. 材料导报, 2020, 34(7): 7053-7060.
[2] 张晓琳, 丰晓婷, 詹世平, 卢春兰, 李鸣明, 侯维敏. 基于双硫键的荧光传感器在生物检测及靶向治疗药物输送系统中的应用[J]. 材料导报, 2020, 34(5): 5142-5147.
[3] 张美云, 罗晶晶, 杨斌, 刘国栋, 宋顺喜. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5): 5158-5166.
[4] 黄海亮, 陈跃良, 张勇, 卞贵学, 王晨光, 吴省均. 飞机多金属耦合在溶液状态与大气状态下的腐蚀行为对比及当量折算研究[J]. 材料导报, 2020, 34(4): 4118-4125.
[5] 安世崇,黄茜,陈沛润,张力,赵颖,张晓丹. 半透明钙钛矿及叠层太阳电池中的透明电极研究综述[J]. 材料导报, 2020, 34(3): 3069-3079.
[6] 张永芳, 王霞, 邢志国, 黄艳斐, 郭伟玲. 面向机械装备健康监测的振动传感器研究现状[J]. 材料导报, 2020, 34(13): 13121-13130.
[7] 罗国平, 张漫虹, 梁铨斌, 陈冬, 陈星源, 李天乐, 朱伟玲. 射频功率和工作压强对Ga、Al共掺杂ZnO薄膜性能的影响[J]. 材料导报, 2020, 34(12): 12020-12024.
[8] 任瑞丽, 王会才, 高丰, 岳瑞瑞, 汪振文. 石墨烯基柔性超级电容器复合电极材料的研究进展[J]. 材料导报, 2020, 34(11): 11099-11105.
[9] 李法利,李晟斌,曹晋玮,刘宜伟,尚杰,李润伟. 弹性敏感材料与传感器件[J]. 材料导报, 2020, 34(1): 1059-1068.
[10] 骆泽纬,田希悦,范基辰,杨鑫,樊天意,王超伦,吴幸,褚君浩. 智能时代下的新型柔性压阻传感器[J]. 材料导报, 2020, 34(1): 1069-1079.
[11] 杨丹,刘妍,钟正祥,田宫伟,樊文倩,王宇,齐殿鹏. 植入式神经微电极[J]. 材料导报, 2020, 34(1): 1107-1113.
[12] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[13] 李一帆,刘宇航,孙晋蒙,吴乾鑫,龚昕,杜洪方,艾伟,黄维. 柔性储能器件的电极设计研究进展[J]. 材料导报, 2020, 34(1): 1177-1186.
[14] 李寒, 孙志鹏, 贾殿赠. 柔性钛箔上生长的自支撑TiO2@NiCo2S4阵列复合材料用作高性能非对称超级电容器电极[J]. 材料导报, 2020, 34(1): 1187-1194.
[15] 齐云霞, 赵小伟, 杨永新, 黄冬维, 赵辉玲, 丁海生, 程广龙. TiO2基光电化学传感器电极结构调控的研究进展[J]. 材料导报, 2019, 33(Z2): 48-52.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed