Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22050304-9    https://doi.org/10.11896/cldb.22050304
  无机非金属及其复合材料 |
低碳胶凝材料的研究进展
聂松, 周健*, 徐名凤, 李辉
河北工业大学土木与交通学院,天津 300401
Research Progress of Low-carbon Binders
NIE Song, ZHOU Jian*, XU Mingfeng, LI Hui
School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
下载:  全 文 ( PDF ) ( 5320KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥作为构筑现代社会不可或缺的原材料,在满足基础设施建设巨大需求的同时,自身生产伴随着CO2排放高的问题。近年来,为减少水泥生产过程中的CO2排放,实现水泥行业可持续发展,人们提出了一系列CO2减排措施,包括提高能源效率、使用替代原燃料、使用辅助胶凝材料、采用CCUS技术以及开发新型低碳胶凝材料等。从长远来看,低碳胶凝材料将在水泥行业CO2减排中起重要作用。本文总结了低熟料水泥、低钙水泥、固碳水泥和碱激发胶凝材料四类低碳胶凝材料的研究进展,介绍了各类低碳胶凝材料的制备方法与基本性能,对比分析了传统硅酸盐水泥与低碳胶凝材料的CO2排放,最后指出了低碳胶凝材料发展过程中存在的问题,并为其进一步研究工作提出了建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
聂松
周健
徐名凤
李辉
关键词:  水泥  CO2排放  低碳胶凝材料  CO2减排技术    
Abstract: Cement is an essential building material for society’s infrastructure around the world. However, the cement industry is responsible for an unacceptable increase in CO2 emissions. To mitigate these emissions, several approaches have been proposed, including improving energy efficiency, using alternative raw materials and/or alternative fuels, utilizing CCUS technology and developing low-carbon binders. In the long term, low-carbon binders are expected to play an important role in CO2 emission reduction of the cement industry. In this review, we summarize the research progress on four types of low carbon binders, viz. low clinker cements, low calcium cements, carbon fixation cements and alkali activated binders, introduce the preparation methods and properties of low-carbon binders, compare and analyze CO2 emissions of traditional Portland cement and low-carbon binders. Finally, we point out the issues on the development of low-carbon binders, and put forward proposals on their further research.
Key words:  cement    carbon dioxide emissions    low-carbon binders    technologies on carbon dioxide reduction
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TU52  
基金资助: 国家自然科学基金(52008151;52178200)
通讯作者:  *周健,河北工业大学土木与交通学院教授、博士研究生导师。2004年山东大学土木工程专业本科毕业,2006年和2011年先后获得荷兰代尔夫特理工大学土木工程专业硕士学位和博士学位。目前主要从事低碳利废水泥设计、性能与应用技术研究。发表论文60余篇,包括Cement and Concrete Research、Cement and Concrete Composites、Construction and Building Materials、Journal of Cleaner Production等。zhoujian@hebut.edu.cn   
作者简介:  聂松,2016年6月、2019年6月分别于南昌大学和北京工业大学获得工学学士学位和硕士学位。现为河北工业大学土木与交通学院博士研究生,在周健教授的指导下进行研究。目前主要研究领域为低碳胶凝材料的开发与应用。
引用本文:    
聂松, 周健, 徐名凤, 李辉. 低碳胶凝材料的研究进展[J]. 材料导报, 2024, 38(2): 22050304-9.
NIE Song, ZHOU Jian, XU Mingfeng, LI Hui. Research Progress of Low-carbon Binders. Materials Reports, 2024, 38(2): 22050304-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050304  或          http://www.mater-rep.com/CN/Y2024/V38/I2/22050304
1 IPCC. Climate change 2014:synthesis report, IPCC, Geneva, Szwitzerland, 2014, pp. 151.
2 IPCC. Global warming of 1.5 ℃, World Meteorological Organization, Geneva, Switzerland, 2018, pp. 32.
3 Andrew R M. Earth System Science Data, 2019, 11(4), 1675.
4 Wojtacha-Rychter K, Kucharski P, Smolinski A. Energies, 2021, 14(6), 1539.
5 USGS. Cement Statistics and Information, 2021. https:www.usgs.gov/centers/national-minerals-information-center/cement-statistics-and-in-formation.
6 He J Y, He J, Wang Y T, et al. Research of Environmental Sciences, 2022, 35(2), 347(in Chinese).
贺晋瑜, 何捷, 王郁涛, 等. 环境科学研究, 2022, 35(2), 347.
7 Cembureau. Cementing the European green deal-reaching climate neutrality along the cement and concrete value chain by 2050, The European Cement Association, Brussels, Belgium, 2020, pp. 38.
8 Cantini A, Leoni L, De Carlo F, et al. Sustainability, 2021, 13(7), 3810.
9 UN Environment, Scrivener K L, John V M, et al. Cement and Concrete Research, 2018, 114, 2.
10 Abdul-Wahab S A, Al-Dhamri H, Ram G, et al. International Journal of Sustainable Engineering, 2021, 14(4), 743.
11 Snellings R. RILEM Technical Letters, 2016, 1, 50.
12 Miller S A, John V M, Pacca S A, et al. Cement and Concrete Research, 2018, 114, 115.
13 Scrivener K, Martirena F, Bishnoi S, et al. Cement and Concrete Research, 2018, 114, 49.
14 Monteiro J, Roussanaly S. Journal of CO2 Utilization, 2022, 61, 102015.
15 Shi C, Qu B, Provis J L. Cement and Concrete Research, 2019, 122, 227.
16 Gartner E, Sui T. Cement and Concrete Research, 2018, 114, 27.
17 Gao D B. China Cement, 2021(6), 14(in Chinese).
高登榜. 中国水泥, 2021(6), 14.
18 Shi C J, Wang D H, Jia H F, et al. Journal of the Chinese Ceramic Society, 2017, 45(11), 1582(in Chinese).
史才军, 王德辉, 贾煌飞, 等. 硅酸盐学报, 2017, 45(11), 1582.
19 John V M, Damineli B L, Quattrone M, et al. Cement and Concrete Research, 2018, 114, 65.
20 Fernandez R, Martirena F, Scrivener K. Cement and Concrete Research, 2011, 41(1), 113.
21 Kocak Y. Journal of Building Engineering, 2020, 31, 101419.
22 Shah V, Parashar A, Scott A. Construction and Building Materials, 2022, 319, 126155.
23 Mansour A M, Al Biajawi M I. Materials Today:Proceedings, 2022, 66, 2811.
24 Vejmelková E, Keppert M, Grzeszczyk S, et al. Construction and Buil-ding Materials, 2011, 25(3), 1325.
25 Antoni M, Rossen J, Martirena F, et al. Cement and Concrete Research, 2012, 42(12), 1579.
26 Avet F, Scrivener K. Cement and Concrete Research, 2018, 107, 124.
27 Dhandapani Y, Sakthivel T, Santhanam M, et al. Cement and Concrete Research, 2018, 107, 136.
28 Kühl H. German patent, 237777, 1908.
29 Masoudi R, Hooton R D. Cement and Concrete Composites, 2019, 103, 193.
30 Erdem E, Ölmez H. Cement and Concrete Research, 1993, 23(1), 115.
31 Pang M, Sun Z, Huang H. Materials, 2020, 13(15), 3383.
32 Grounds T, Nowell D, Wilburn F. Journal of Thermal Analysis and Calorimetry, 1994, 41(2-3), 687.
33 Matschei T, Bellmann F, Stark J. Advances in Cement Research, 2005, 17(4), 167.
34 Wu Q, Xue Q, Yu Z. Journal of Cleaner Production, 2021, 294, 126228.
35 Sun Z, Nie S, Zhou J, et al. Journal of Cleaner Production, 2022, 333, 130094.
36 Gruskovnjak A, Lothenbach B, Winnefeld F, et al. Cement and Concrete Research, 2008, 38(7), 983.
37 Liu S, Wang L, Gao Y, et al. Journal of Thermal Analysis and Calorimetry, 2014, 118(3), 1483.
38 Lu J X, Shui Z H, Tian S F, et al. Journal of Wuhan University of Technology, 2013, 35(5), 1(in Chinese).
陆建鑫, 水中和, 田素芳, 等. 武汉理工大学学报, 2013, 35(5), 1.
39 Zhou J, Chen Z, Zhang Z, et al. U. S. patent, US10947159, 2021.
40 陈智丰, 张振秋, 周健. 中国专利, CN201711219814. 4, 2020.
41 Sun Z, Zhou J, Qi Q, et al. Materials, 2020, 13(11), 2514.
42 Sun Z N, Zhou J, Mu R, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(8), 2362(in Chinese).
孙正宁, 周健, 慕儒, 等. 硅酸盐通报, 2019, 38(8), 2362.
43 Sun Z N. Hydration and hardening of high-flexural strength low-heat slag calcium sulfoaluminate cement. Master’s Thesis, Hebei University of Technology, China, 2019(in Chinese).
孙正宁. 高抗折低热矿渣硫铝酸盐水泥水化硬化机理. 硕士学位论文, 河北工业大学, 2019.
44 Liu H R. Chemical corrosion resistance and mechanism analysis of high-flexural strength low-heat slag calcium sulfoaluminate cement. Master’s Thesis, Hebei University of Technology, China, 2019(in Chinese).
刘浩然. 高抗折低热矿渣硫铝酸盐水泥抗化学侵蚀性能及机理. 硕士学位论文, 河北工业大学, 2019 .
45 Nie S, Zhou J, Yang F, et al. Journal of Cleaner Production, 2022, 334, 130270.
46 Sui T B, Wen Z J. China Building Materials, 2003(9), 60(in Chinese).
隋同波, 文寨军. 中国建材, 2003(9), 60.
47 Li J Y, Peng X P, Cao J G, et al. Journal of the Chinese Ceramic Society, 2004(3), 364(in Chinese).
李金玉, 彭小平, 曹建国, 等. 硅酸盐学报, 2004(3), 364.
48 Cuesta A, Ayuela A, Aranda M A G. Cement and Concrete Research, 2021, 140, 106319.
49 Taylor H F W. Cement chemistry, Thomas Telford, UK, 1997, pp. 217.
50 Sui T, Fan L, Wen Z, et al. Journal of Civil Engineering and Architecture, 2015, 4, 384.
51 Sui T B, Liu K Z, Wang J, et al. Journal of the Chinese Ceramic Society, 1999(4), 106(in Chinese).
隋同波, 刘克忠, 王晶, 等. 硅酸盐学报, 1999(4), 106.
52 Zhao P, Liu K Z, Sui T B, et al. Cement, 1999(8), 1(in Chinese).
赵平, 刘克忠, 隋同波, 等. 水泥, 1999(8), 1.
53 Wang Y M, Su M Z, Zhang L. Sulphoaluminate cement, Beijing University of Technology Press, China, 1999(in Chinese).
王燕谋, 苏慕珍, 张量. 硫铝酸盐水泥, 北京工业大学出版社, 1999.
54 Yoon H N, Seo J, Kim S, et al. Construction and Building Materials, 2021, 268, 121214.
55 Seo J, Kim S, Park S, et al. Cement and Concrete Composites, 2021, 118, 103918.
56 Liao Y, Jiang G, Wang K, et al. Construction and Building Materials, 2020, 265, 120301.
57 Burris L E, Kurtis K E. Cement, 2022, 8, 100032.
58 da Costa E B, Rodríguez E D, Bernal S A, et al. Construction and Buil-ding Materials, 2016, 122, 373.
59 Rungchet A, Poon C S, Chindaprasirt P, et al. Cement and Concrete Composites, 2017, 83, 10.
60 Canbek O, Shakouri S, Erdoan S T. Cement and Concrete Composites, 2020, 106, 103475.
61 Hanein T, Galvez-Martos J L, Bannerman M N. Journal of Cleaner Production, 2018, 172, 2278.
62 Gartner E, Li G. U. S. patent, US7850776, 2010.
63 Bullerjahn F, Schmitt D, Haha M B. Cement and Concrete Research, 2014, 59, 87.
64 Bullerjahn F, Schmitt D, Haha M B, et al. U. S. patent, US9067825, 2015.
65 Zhang Z. U. S. patent, US9822036, 2017.
66 Lan M Z, Xiang B F, Zhou J, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(8), 2720(in Chinese).
兰明章, 项斌峰, 周健, 等. 硅酸盐通报, 2017, 36(8), 2720.
67 Xiang B F. Study on the hydration and hardening mechanism of high belite calcium sulfoaluminate cement. Master’s Thesis, Beijing University of Technology, China, 2017(in Chinese)
项斌峰. 快凝快硬高贝利特硫铝酸盐水泥水化硬化机理研究. 硕士学位论文, 北京工业大学, 2017.
68 Qi Q L, Zhou J, Ge Z X, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(8), 2508(in Chinese).
齐秋霖, 周健, 葛仲熙, 等. 硅酸盐通报, 2021, 40(8), 2508.
69 Zheng J, Li H, Xu M F, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(9), 2898(in Chinese).
郑娟, 李辉, 徐名凤, 等. 硅酸盐通报, 2021, 40(9), 2898.
70 Li J, Zhou C Y, Yang Y J. Journal of the Chinese Ceramic Society, 2012, 40(11), 1618(in Chinese).
李娟, 周春英, 杨亚晋. 硅酸盐学报, 2012, 40(11), 1618.
71 Li G, Walenta G, Gartner E. In:the 12th International Congress on the Chemistry of Cement. Montreal, 2007, pp. 9.
72 Shen Y, Chen X, Li J, et al. Materials, 2022, 15(12), 4369.
73 Lan M Z, Nie S, Wang J F, et al. Materials Reports, 2019, 33(9), 1512(in Chinese).
兰明章, 聂松, 王剑锋, 等. 材料导报, 2019, 33(9), 1512.
74 Quinn S, Sahu S. U. S. patent, US10196311, 2019.
75 Riman R E, Atakan V, Vakifahmetoglu C, et al. U. S. patent, US9216926, 2015.
76 Ashraf W, Olek J, Jain J. Cement and Concrete Research, 2017, 100, 361.
77 Chen Q D. Cement Technology, 2016(3), 89(in Chinese).
陈友德. 水泥技术, 2016(3), 89.
78 Atakan V, Sahu S, Quinn S, et al. ZKG International, 2014, 67(3), 60.
79 Villani C, Spragg R, Tokpatayeva R, et al. In:the 4th International Conference on the Durability of Concrete Structures. West Lafayette, 2014, pp. 262.
80 Farnam Y, Villani C, Washington T, et al. Construction and Building Materials, 2016, 111, 63.
81 Jain J A, Seth A, DeCristofaro N. Proceedings of the Institution of Civil Engineers-Construction Materials, 2019, 172(4), 179.
82 Ruan S, Unluer C. Journal of Cleaner Production, 2016, 137, 258.
83 Grünhäuser S E, Castro-Gomes J. Journal of Cleaner Production, 2021, 305, 127210.
84 Walling S A, Provis J L. Chemical Reviews, 2016, 116(7), 4170.
85 Gartner E, Hirao H. Cement and Concrete Research, 2015, 78, 126.
86 Mo L, Deng M, Tang M. Cement and Concrete Research, 2010, 40(3), 437.
87 Vandeperre L, Liska M, Al-Tabbaa A. Journal of Materials in Civil Engineering, 2008, 20(5), 375.
88 Khalil A, Celik K. Ceramics International, 2019, 45, 22821.
89 Mo L, Panesar D K. Cement and Concrete Research, 2012, 42(6), 769.
90 Mo L, Panesar D K. Cement and Concrete Composites, 2013, 43, 69.
91 Dung N T, Unluer C. Cement and Concrete Research, 2018, 103, 160.
92 Dung N T, Lesimple A, Hay R, et al. Cement and Concrete Research, 2019, 125, 105894.
93 Pu L, Unluer C. Construction and Building Materials, 2016, 120, 349.
94 Hay R, Celik K. Cement and Concrete Research, 2020, 128, 105941.
95 Kong D Y, Zhang J Z, Ni T Y, et al. Journal of the Chinese Ceramic Society, 2009, 37(1), 151(in Chinese).
孔德玉, 张俊芝, 倪彤元, 等. 硅酸盐学报, 2009, 37(1), 151.
96 Provis J L. Cement and Concrete Research, 2018, 114, 40.
97 Bernal S A. RILEM Technical Letters, 2016, 1, 39.
98 Zheng W Z, Zou M N, Wang Y. Journal of Building Structures, 2019, 40(1), 28(in Chinese).
郑文忠, 邹梦娜, 王英. 建筑结构学报, 2019, 40(1), 28.
99 Puertas F, Palacios M, Manzano H, et al. Journal of the European Ceramic Society, 2011, 31(12), 2043.
100 Pacheco-Torgal F, Castro-Gomes J, Jalali S. Construction and Building Materials, 2008, 22(7), 1305.
101 Li C, Sun H, Li L. Cement and Concrete Research, 2010, 40(9), 1341.
102 Li N, Shi C, Wang Q, et al. Materials and Structures, 2017, 50(3), 178.
103 Zheng W Z, Chen W H, Wang Y. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2009, 37(10), 96(in Chinese).
郑文忠, 陈伟宏, 王英. 华中科技大学学报(自然科学版), 2009, 37(10), 96.
104 Hossain M M, Karim M R, Hossain M K, et al. Construction and Buil-ding Materials, 2015, 93, 95.
105 Lee N K, Jang J G, Lee H K. Cement and Concrete Composites, 2014, 53, 239.
106 Krivenko P, Kovalchuk O, Pasko A, et al. Construction and Building Materials, 2017, 151, 819.
107 Yusuf M O, Megat J M A, Ahmad Z A, et al. Construction and Buil-ding Materials, 2014, 52, 504.
108 Gettu R, Patel A, Rathi V, et al. Materials and Structures, 2019, 52(1), 10.
109 McLellan B C, Williams R P, Lay J, et al. Journal of Cleaner Production, 2011, 19(9), 1080.
110 Turner L K, Collins F G. Construction and Building Materials, 2013, 43, 125.
[1] 兰雪江, 张翛, 王永宝, 郝忠卿. 水泥稳定再生碎石物理力学性能研究进展[J]. 材料导报, 2024, 38(2): 22040402-12.
[2] 郭远臣, 刘芯州, 王雪, 叶青, 向凯, 王锐. 多尺度钢纤维混杂增强水泥基材料抗冲击性能及阻裂能力[J]. 材料导报, 2024, 38(2): 22030271-8.
[3] 阳虎, 单丽岩, 李志伟. 基于CT图像的水泥稳定RAP材料细观结构研究[J]. 材料导报, 2024, 38(1): 22050037-6.
[4] 杨志强, 李化建, 温家馨, 董昊良, 易忠来, 黄法礼, 王振. 高速铁路无砟轨道水泥基材料与结构的疲劳损伤及服役寿命综述[J]. 材料导报, 2023, 37(S1): 22100219-8.
[5] 沈燕, 朱航宇, 龚泳帆, 何强. 碱对硫铝酸盐水泥-粉煤灰体系水化硬化的影响[J]. 材料导报, 2023, 37(S1): 23050143-6.
[6] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[7] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[8] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[9] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[10] 徐阳晨, 邢国华, 赵嘉华. 碱矿渣水泥基材料的干燥收缩及减缩技术研究进展[J]. 材料导报, 2023, 37(7): 21060180-11.
[11] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[12] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[13] 宫经伟, 谢刚川, 秦灿, 晋强. 基于电阻率和ζ-电位法的低热硅酸盐水泥早期水化特性[J]. 材料导报, 2023, 37(4): 21050113-9.
[14] 杨海涛, 卞洪健, 刘娟红. 水泥基材料中SAP的吸水、释水和再膨胀行为综述[J]. 材料导报, 2023, 37(4): 21030240-7.
[15] 余波, 黄俊铭, 卢金马, 杨绿峰. 水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置及方法[J]. 材料导报, 2023, 37(3): 21030054-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed