Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22050037-6    https://doi.org/10.11896/cldb.22050037
  无机非金属及其复合材料 |
基于CT图像的水泥稳定RAP材料细观结构研究
阳虎, 单丽岩*, 李志伟
哈尔滨工业大学交通科学与工程学院,哈尔滨 150090
Meso-structure of Cement Stabilized RAP Materials Based on CT Images
YANG Hu, SHAN Liyan*, LI Zhiwei
School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
下载:  全 文 ( PDF ) ( 10382KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究沥青混合料回收料 (RAP) 掺加对混合料组成与结构特性的影响,可为其应用在路面结构层以及材料参数设计提供理论支撑。基于X-ray CT与图像处理技术,提出了一种可区分新旧集料的冷再生混合料细观结构识别方法,分析了RAP团粒、旧集料与新集料的细观特征的差异,研究了RAP的掺加对水泥稳定材料细观结构的影响。结果表明:提出的细观结构识别方法可准确识别水泥稳定RAP材料断面图像中的空隙、砂浆、新集料与旧集料四类区域,完整地保留新旧集料的原始轮廓、大小与形状等信息;RAP团粒中分布较多初始微细裂缝,且旧集料扁平比与棱角性系数均大于新集料;RAP的掺加一方面增加了再生混合料中体积小于0.01 mm3的微空隙与大于100 mm3的大空隙数量,导致材料的密实度降低;另一方面也增加了材料的沥青砂浆含量,提高了再生混合料的平均砂浆膜厚度,使混合料骨架内部力传导更均匀;提高水泥稳定RAP材料中石屑与碎石比例,可使材料的平均空隙体积减小、平均砂浆膜厚度增大,从而改善再生混合料的骨架填充状态。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阳虎
单丽岩
李志伟
关键词:  RAP  水泥稳定材料  X-ray CT  细观结构  冷再生技术    
Abstract: Studying the influence of reclaimed asphalt pavement (RAP) on the composition and structural characteristics of mixtures can provide theoretical support for their application in pavement structure layer and material parameter design. This paper proposed a method for identifying the meso-structure of cold recycled mixtures, both new and old aggregates, based on the X-ray CT and image processing technology. The diffe-rences in the meso-structure characteristics of RAP, old aggregates, and new aggregates were analyzed, and the effects of RAP on the meso-structure characteristics of the cement-stabilized RAP materials were studied. The results demonstrate that the proposed meso-structure recognition method can accurately identify the void, mortar, new aggregate, and old aggregate in the section image of cement-stabilized RAP material and completely retain the original outline, size, and shape information of new and old aggregates. Compared with the new aggregate, the old aggregate has a higher flat ratio and angular coefficient. Further, several micro air voids and cracks are present in RAP-granular. The addition of RAP increases the number of micro air voids (volume less than 0.01 mm3) and large voids (volume greater than 100 mm3) in the recycled mixture, resulting in the reduction of material compactness; further, the asphalt mortar content of the material increases, the average mortar film thickness of the recycled mixture improves, and the internal force conduction of the mixture skeleton becomes more uniform. Increasing the proportion of RAP materials stabilized with cement can reduce the average void volume and increase the average mortar film thickness, thereby improving the skeleton filling status of the recycled mixture.
Key words:  RAP    cement-stabilized material    X-ray CT    meso-structure    cold recycling technology
发布日期:  2024-01-16
ZTFLH:  U414  
基金资助: 国家自然科学基金(51978218)
通讯作者:  单丽岩,哈尔滨工业大学交通科学与工程学院教授、博士研究生导师。2003年、2005年分别于哈尔滨工业大学获得工学学士学位和硕士学位,2010年获得哈尔滨工业大学道路与铁道工程专业博士学位。目前主要从事沥青基材料黏弹-损伤理论、固废资源化关键技术等方面的研究工作,以第一或通信作者在Fuel、J. Rheol.等期刊发表SCI/EI论文30余篇(含中科院1区/TOP期刊11篇);出版学术专著2部、教材1部;编写国家标准1部、地方标准5部;获授权/受理专利20余项。shanliyan@hit.edu.cn   
作者简介:  阳虎,2019年6月、2021年6月分别于武汉理工大学和哈尔滨工业大学获得工学学士学位和硕士学位。现为哈尔滨工业大学交通科学与工程学院博士研究生,在单丽岩教授的指导下进行研究。目前主要开展沥青路面冷再生关键技术的研究工作。
引用本文:    
阳虎, 单丽岩, 李志伟. 基于CT图像的水泥稳定RAP材料细观结构研究[J]. 材料导报, 2024, 38(1): 22050037-6.
YANG Hu, SHAN Liyan, LI Zhiwei. Meso-structure of Cement Stabilized RAP Materials Based on CT Images. Materials Reports, 2024, 38(1): 22050037-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050037  或          http://www.mater-rep.com/CN/Y2024/V38/I1/22050037
1 Xiao F, Yao S, Wang J, et al. Construction and Building Materials, 2018, 180, 579.
2 Antunes V, Freire A C, Neves J. Construction and Building Materials, 2019, 211, 453.
3 Zeng S F, Xu J P. Journal of Highway and Transportation Research and Development, 2007(3), 39 (in Chinese).
曾石发, 徐江萍. 公路交通科技, 2007(3), 39.
4 Luo K. Study on road performance about cement stabilization crushed-stones mixed with reclaimed asphalt pavement. Master’s Thesis, Changsha University of Science & Technology, China, 2017 (in Chinese).
罗坤. 掺废旧沥青混合料水泥稳定碎石路用性能研究. 硕士学位论文, 长沙理工大学, 2017.
5 Puppala A J, Hoyos L R, Potturi A K. Journal of Materials in Civil Engineering, 2011, 23(7), 990.
6 Mokwa R L, Peebles C S, Robinson E. Pavement Mechanics and Performance, 2006, 1, 247.
7 Ji X, Jiang Y, Liu Y. Materials and Structures, 2016, 49(6), 2257.
8 Ren J, Wang S, Zang G. Construction and Building Materials, 2020, 244, 118329.
9 Liu L Z. The quality control research of RAP material mixing plant thermal regeneration mixes. Master’s Thesis, Chongqing Jiaotong University, China, 2013 (in Chinese).
刘立志. RAP材料厂拌热再生混合料质量控制研究. 硕士学位论文, 重庆交通大学, 2017.
10 Liu T, Ming T Z, Hu G W. Applied Mechanics and Materials, 2012, 204-208, 1730.
11 Ma J Y. Research on the application of cold reclaimed old asphalt pavement material in the base. Master’s Thesis, Chang’an University, China, 2005 (in Chinese).
马君毅. 冷再生旧沥青路面材料在基层中的应用研究. 硕士学位论文, 长安大学, 2005.
12 Ren J, Wang S, Zang G. Construction and Building Materials, 2020, 244, 118329.
13 Brown A V. Transportation Research Record, 2007, 2026(1), 47.
14 Ma S L, Wang C X, Wang P F, et al. Northeastern Highway, 2003, 26(4), 37 (in Chinese).
马松林, 王彩霞, 王鹏飞, 等. 东北公路, 2003, 26(4), 37.
15 Lu H, Peterson K, Chernoloz O. International Journal of Pavement Engineering, 2018, 19(2), 109.
16 Huang W K, Zhang X N. Journal of Harbin Institute of Technology, 2016, 48(3), 125 (in Chinese).
黄文柯, 张肖宁. 哈尔滨工业大学学报, 2016, 48(3), 125.
17 Ma J Y. Meso-structure and stress strain transfer mechanism of skeleton filling system of asphalt mixture. Ph. D. Thesis, Harbin Institute of Technology, China, 2005 (in Chinese).
邢超. 沥青混合料骨架填充体系细观结构及应力应变传递机制研究. 博士学位论文, 哈尔滨工业大学, 2018.
18 Tan Y Q, Xing C, Ren J D, et al. China Journal of Highway and Transport, 2017, 30(7), 1 (in Chinese).
谭忆秋, 邢超, 任俊达, 等. 中国公路学报, 2017, 30(7), 1.
19 Tan Y Q, Xing C, Zhang L, et al. China Journal of Highway and Transport, 2016, 29(4), 8 (in Chinese).
谭忆秋, 邢超, 张磊, 等. 中国公路学报, 2016, 29(4), 8.
20 Liu J. Research on compression resilient modulus and meso-skeleton cha-racteristics of cement stabilized crushed rock material. Master’s Thesis, South China University of Technology, China, 2019 (in Chinese).
刘健. 水泥稳定碎石抗压回弹模量及其细观骨架特征研究. 硕士学位论文, 华南理工大学, 2019.
21 Li Z, Liu J H. Journal of Wuhan University of Technology, 2011, 33(6), 50 (in Chinese).
李智, 刘佳辉. 武汉理工大学学报, 2011, 33(6), 50.
22 Wang F, Xiao Y, Cui P D. Materials Reports, 2022, 36(17), 1 (in Chinese).
王凤, 肖月, 崔培德, 等. 材料导报, 2022, 36(17), 1.
23 Gao L. Cracking behavior and fracture mechanism of cold recycled mixes with emulsion. Ph. D. Thesis, Southeast University, China, 2016 (in Chinese).
高磊. 乳化沥青冷再生混合料的裂纹发展行为及抗裂机理研究. 博士学位论文, 东南大学, 2016.
24 Zhao Z J. Study on the evaluation method of coarse aggregate angularity and its influence on the road performance of asphalt mixture. Master’s Thesis, Chang’an University, China, 2018 (in Chinese).
赵振军. 粗集料棱角性的评价方法及对混合料性能影响研究. 硕士学位论文, 长安大学, 2018.
25 Stolle D F, Guo P, Emery J J. Canadian Journal of Civil Engineering, 2014, 41(6), 493.
26 Shi H. Investigation on seepage behavior in asphalt mixture based on micro-scale air void morphology genic library. Master’s Thesis, Harbin Institute of Technology, China, 2020 (in Chinese).
石浩. 基于空隙形态特征基因组的沥青混合料细观渗流行为研究. 硕士学位论文, 哈尔滨工业大学, 2020.
27 Attia M, Abdelrahman M. Journal of Materials in Civil Engineering, 2010, 22(12), 1260.
[1] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[2] 王振军, 阎凤凤, 张含笑, 梁晴陨. 乳化沥青与RAP再生界面融合特征研究进展[J]. 材料导报, 2023, 37(7): 21030199-10.
[3] 朱月风, 司春棣, 乔亚宁, 李彦伟. 沥青标号和用量对再生沥青混合料性能的影响[J]. 材料导报, 2021, 35(6): 6086-6092.
[4] 李娜, 赵燕茹. 基于X-ray CT技术研究混凝土内部损伤的研究进展[J]. 材料导报, 2021, 35(21): 21169-21177.
[5] 王舒永, 张凌凯, 陈国新, 袁俊. 基于三维扫描技术的土石混合体离散元模型参数反演及直剪模拟[J]. 材料导报, 2021, 35(10): 10088-10095.
[6] 刘家文, 王冲, 熊光启. 可再分散沥青粉与纳米SiO2复合制备刚性自防水混凝土的研究[J]. 材料导报, 2020, 34(8): 8090-8095.
[7] 李革, 徐泽华, 牛建刚. 塑钢纤维轻骨料混凝土细观破坏过程的数值模拟[J]. 《材料导报》期刊社, 2018, 32(14): 2412-2417.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed