Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22050298-6    https://doi.org/10.11896/cldb.22050298
  金属与金属基复合材料 |
选区激光熔化成形304L不锈钢氦泡长大与辐照硬化行为
侯娟1,2,*, 刘慧2, 陈亮1, 闵师领2, 蒋梦蕾2
1 中广核工程有限公司核电安全技术与装备全国重点实验室,广东 深圳 518172
2 上海理工大学材料与化学学院,上海 200093
Study of Helium Bubbles Growth and Hardening of Selective Laser Melting 304L Stainless Steel Under He+ Irradiation
HOU Juan1,2,*, LIU Hui2, CHEN Liang1, MIN Shiling2, JIANG Menglei2
1 State Key Laboratory of Nuclear Power Safety Technology and Equipment, China Nuclear Power Engineering Co., Ltd., Shenzhen 518172, Guangdong, China
2 School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
下载:  全 文 ( PDF ) ( 18513KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用350 keV He+离子束在300 ℃下对沉积态和固溶态选区激光熔化成形(Selective laser melting,SLM)304L不锈钢进行辐照,辐照剂量为5×1016 ions/cm2,随后进行600 ℃保温1 h退火处理。利用透射电子显微镜(TEM)、正电子湮灭和纳米压痕仪研究氦泡的长大与材料硬化行为。系统对比了沉积态和固溶态两种状态的SLM 304L样品,结果表明:600 ℃退火处理时,沉积态SLM 304L不锈钢表现出优异的抗氦泡粗化能力,主要是由于沉积态样品中高密度位错和纳米析出物-基体界面等作为缺陷阱,有效抑制氦泡生长。此外,沉积态样品比固溶态样品具有更高的抗辐照硬化性能,退火处理后两者的硬化率分别为19%和51%。Orowan模型的计算表明,氦泡粗化程度的差异是造成两种状态下SLM 304L不锈钢硬化率不同的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯娟
刘慧
陈亮
闵师领
蒋梦蕾
关键词:  选区激光熔化  304L不锈钢  氦离子辐照  氦泡长大  辐照硬化    
Abstract: The as-built and solution-annealed selective laser melting 304L stainless steel (SLM 304L SS) were implanted with 350 keV He+ at 300 ℃ to fluxes of 5×1016 ions/cm2 and then annealed at 600 ℃ for 1 h. The helium bubble growth and irradiation hardening in SLM 304L SS were investigated by TEM, positron annihilation, and nanoindentation measurements. Compared those between two variants of SLM 304L SS, one in as-built condition and the other solution-annealed, the results indicates that the as-built sample of the SLM 304L SS exhibited the outstanding resistance to helium bubble growth in the post-irradiation annealed at 600 ℃. Because abundant defect sinks, including high dislocation densities and interfaces between nano-inclusions and the matrix, can effectively inhibit the helium bubble coarsening. Additionally, the hardening rate of the as-built sample is 19% whereas that of the solution-annealed sample is 51% after annealing. According to the calculation of Orowan model, the difference of helium bubble coarsening is the main reason for the different hardening rate of SLM 304L stainless steel in two states.
Key words:  selective laser melting    304L stainless steel    He+ irradiation    helium bubble growth    irradiation hardening
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TL341  
基金资助: 核电安全监控技术与装备国家重点实验室开放课题(CSO-102-001);国家自然科学基金面上项目(52073176);深圳市国际合作研究科技计划项目(GJHZ20200731095203011)
通讯作者:  *侯娟,上海理工大学增材制造研究院副教授、硕士研究生导师。2005年合肥工业大学本科毕业,2010年于中国科学院金属研究所获博士学位,期间(2008—2009年)在日本东北大学进行联合培养。目前主要从事金属增材制造研究,包括不锈钢、铝合金、高温合金等多种金属材料的打印工艺开发、材料性能分析、后处理制度以及相关检验标准与方法的制定。主持国家自然科学基金青年和面上项目,牵头中广核、中国商飞、商发等多项企业研究项目,在Corrosion Science、Journal of Materials Science and Technology、Journal of Nuclear Materials等国外SCI期刊以第一/通信作者发表论文30余篇。hou18217727686@163.com   
引用本文:    
侯娟, 刘慧, 陈亮, 闵师领, 蒋梦蕾. 选区激光熔化成形304L不锈钢氦泡长大与辐照硬化行为[J]. 材料导报, 2024, 38(2): 22050298-6.
HOU Juan, LIU Hui, CHEN Liang, MIN Shiling, JIANG Menglei. Study of Helium Bubbles Growth and Hardening of Selective Laser Melting 304L Stainless Steel Under He+ Irradiation. Materials Reports, 2024, 38(2): 22050298-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050298  或          http://www.mater-rep.com/CN/Y2024/V38/I2/22050298
1 Sjz A, Gsw B. Acta Materialia, 2013, 61(3), 735.
2 Hill, David J. Nature Materials, 2008, 7(9), 680.
3 Baldev R, Mudali U K, Vijayalakshmi M, et al. Advanced Materials Research, 2013, 794, 3.
4 Zhao F Y, He X M, Wang X J, et al. Machine Design & Research, 2016, 32(1), 88 (in Chinese).
赵飞云, 贺小明, 王煦嘉, 等. 机械设计与研究, 2016, 32(1), 88.
5 Lu B H, Li D C. Machine Building & Automation, 2013(4), 1 (in Chinese).
卢秉恒, 李涤尘. 机械制造与自动化, 2013(4), 1.
6 Hou J, Chen W, Chen Z E, et al. Journal of Materials Science & Technology, 2020, 48(13), 63.
7 Trinkaus H, Singh B N. Journal of Nuclear Materials, 2003, 323(2-3), 229.
8 Allen F I, Hosemann P, Balooch M. Scripta Materialia, 2020, 178, 256.
9 Jia X L, He X F, Wu S, et al. Materials Science Forum, 2019, 4734(5), 378.
10 Hasegawa A, Nogami S, Imaseki K. Journal of Nuclear Science and Technology, 2011, 48(1), 130.
11 Graeme Ackland. Science, 2010, 327, 1587.
12 Zhang X, Hattar K, Chen Y, et al. Progress in Materials Science, 2018, 96, 217.
13 Revathy R P B, Monnet I, Hug E, et al. IOP Conference Series: Materials Science and Engineering, 2014, 63(1), 012121.
14 Schäublin R, Ramar A, Baluc N, et al. Journal of Nuclear Materials, 2006, 351(1), 247.
15 Hou J, Dai B, Li Y, et al. Journal of Nuclear Materials, 2020, 542, 152443.
16 Villacampa I, Chen J C, Spätig P, et al. Journal of Nuclear Materials, 2018, 500, 389.
17 Chen J, Romanzetti S, Sommer W F, et al. Journal of Nuclear Materials, 2002, 304(1), 1.
18 Wang L, Wang X P, Zhang L F, et al. Nuclear Materials and Energy, 2019, 21(5), 100710.
19 Fu C, Li J, Bai J, et al. Journal of Nuclear Materials, 2021, 550(6), 152948.
20 Ziegler J F, Ziegler M D, Biersack J P. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2008, 268(11-12), 1818.
21 Chen Q, Zhang K, Liu R D, et al. Atomic Energy Science and Technology, 2020, 54(4), 688 (in Chinese).
陈倩, 张柯, 刘仁多, 等. 原子能科学技术, 2020, 54(4), 688.
22 Nix W D, Gao H. Journal of the Mechanics & Physics of Solids, 1998, 46(3), 411.
23 Kasada R, Takayama Y, Yabuuchi K, et al. Fusion Engineering & Design, 2011, 86( 9-11), 2658.
24 Hunn J D, Lee E H, Byun T S, et al. Journal of Nuclear Materials, 2000, 282(2-3), 131.
25 Lucas G E. Journal of Nuclear Materials, 1993, 206(2-3), 287.
26 Gan J, Was G S. Journal of Nuclear Materials, 2001, 297(2), 161.
[1] 闫占峰, 郑健, 周韦, 王浩. 氦离子辐照下6061-Al合金中的氦泡行为研究[J]. 材料导报, 2024, 38(1): 22030107-7.
[2] 彭乐, 郑志军. 激光选区熔化成形金属件的缺陷类型及表征方法概述[J]. 材料导报, 2023, 37(8): 21050053-7.
[3] 曹宇, 白朴存, 刘飞, 侯小虎. 选区激光熔化IN718合金固溶过程成分均匀化规律的研究[J]. 材料导报, 2023, 37(21): 22040096-7.
[4] 梁梦, 黎振华, 刘美红, 罗心磊, 解靖伟. 选区激光熔化Fe-10Cu合金成形工艺优化研究[J]. 材料导报, 2023, 37(14): 21110123-7.
[5] 袁信翊, 刘杨, 李明轩, 陆晓峰, 朱晓磊. 基于打印参数的选区激光熔化构件内部形貌调控研究现状[J]. 材料导报, 2022, 36(21): 20080263-9.
[6] 滕宝仁, 黎振华, 李淮阳, 杨睿, 申继标. 选区激光熔化制备颗粒增强金属基复合材料的研究进展[J]. 材料导报, 2022, 36(2): 20040170-6.
[7] 马玉天, 许佳玉, 高钰璧, 刘博, 胡勇, 丁雨田, 陈大林, 陈韩锋. SLM成形Inconel 738合金缺陷的演变及形成机理[J]. 材料导报, 2022, 36(13): 21040269-7.
[8] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[9] 黄建国, 任淑彬. 选区激光熔化成型铝合金的研究现状及展望[J]. 材料导报, 2021, 35(23): 23142-23152.
[10] 陈帅, 陶凤和, 贾长治, 孙河洋. 选区激光熔化成型4Cr5MoSiV1钢的组织与性能优化[J]. 材料导报, 2021, 35(16): 16126-16132.
[11] 褚夫众, 张曦, 黄文静, 侯娟, 张恺, 黄爱军. 选区激光熔化铝合金缺陷的形成机制和对力学性能的影响:综述[J]. 材料导报, 2021, 35(11): 11110-11118.
[12] 宋亢, 坚增运, 王渭中, 陈焱. SLM成形10%SiC颗粒增强铝基复合材料的工艺优化及性能[J]. 材料导报, 2020, 34(Z2): 376-380.
[13] 张亚娟, 李亚楠, 宋晓艳, 王海滨, 侯超, 聂祚仁. 特殊粒径分布球形Ni粉的制备及SLM工艺性能研究[J]. 材料导报, 2020, 34(6): 6114-6119.
[14] 李卿, 赵国瑞, 马文有, 余红雅, 刘敏. 选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34(4): 4073-4076.
[15] 秦翔, 杨军, 邹德宁, 谢燕翔. 选区激光熔化线能量对Inconel718涂层组织结构及性能的影响[J]. 材料导报, 2020, 34(4): 4093-4097.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed