Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22030247-12    https://doi.org/10.11896/cldb.22030247
  高分子与聚合物基复合材料 |
碳纤维增强聚合物基复合材料界面特性研究进展
李美琪1, 李晓飞1, 王瑞涛2, 聂林峰1, 张润1, 张冬海1,*, 陈运法1,3,*
1 中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190
2 天津大学浙江研究院,浙江 宁波 315201
3 中国科学院大学材料与光电研究中心,北京 100049
Research Progress on the Interface Properties of Carbon Fiber Reinforced Polymer Matrix Composites
LI Meiqi1, LI Xiaofei1, WANG Ruitao2, NIE Linfeng1, ZHANG Run1, ZHANG Donghai1,*, CHEN Yunfa1,3,*
1 State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
2 Zhejiang Institute of Tianjin University, Ningbo 315201, Zhejiang, China
3 Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 26712KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 与传统金属材料相比,碳纤维增强聚合物基复合材料(Carbon fiber reinforced polymer matrix composites,CFRPMC)在比强度、密度等方面优势明显,已广泛应用于机械制造、交通运输、航空航天等领域。除了碳纤维和聚合物基体,二者相互间的界面特性也对CFRPMC的理化性能有着重要影响,并成为复合材料技术领域倍受关注的研究热点。
CFRPMC界面层是碳纤维与聚合物基体间的过渡区域,其受碳纤维表面特性、聚合物分子链极性等众多因素影响,目前尚不能对其直接定量、定性分析。但随着材料检测技术的进步,CFRPMC界面特性研究不断深入,相关技术如SEM、TEM、AFM、各种光谱、宏观表面分析和力学性能测试等已大量用于复合材料界面组成、结构形态和微观力学特性的研究。 本文综述了碳纤维增强聚合物基复合材料界面特性研究的进展,详细论述了碳纤维和聚合物基体的界面理论、界面分析表征方法及界面性能的影响因素。通过对比与分析,总结了CFRPMC界面研究的最新进展,并对其未来的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李美琪
李晓飞
王瑞涛
聂林峰
张润
张冬海
陈运法
关键词:  碳纤维  复合材料  界面  表征    
Abstract: Compared with traditional metal materials, carbon fiber reinforced polymer matrix composites(CFRPMC) have obvious advantages in specific strength and density, and have been widely used in machinery manufacturing, transportation, aerospace and other fields. In addition to carbon fiber and polymer matrix, the interfacial properties between the two also have an important impact on the physical and chemical properties of CFRPMC, and have become a research hotspot in the field of composite material technology.
The physical and chemical properties of CFRPMC are not only closely related to the properties of carbon fiber and polymer matrix, but also affected by the interface properties between them. CFRPMC is gaining more and more interest due to the rapid development of the composite material industry, mainly focusing on the study of its interface properties. In addition to carbon fiber and the polymer matrix, the interfacial properties of them also have an important impact on the physical and chemical properties of CFRPMC, and have become a research hotspot in the field of composite materials technology.
The CFRPMC interface is the transition region between the carbon fiber and the polymer matrix, which is affected by many factors such as the surface characteristics of the carbon fiber and the polarity of the polymer molecular chain. At present, it can’t be directly quantitatively and qualitatively analyzed. However, with the development of material detection technology, related technologies such as SEM, TEM, AFM, various spectroscopy, macroscopic surface analysis and mechanical property testing, have been widely used in the interface composition, structural morphology and mechanical properties of composites. In this paper, the research progress of the interface of CFRPMC is reviewed, and the interface theory, interface analysis and characterization methods and the influencing factors of interface properties of carbon fiber and polymer matrix are discussed in detail. Through comparison and analysis, the latest progress of CFRPMC interface research is summarized, and the future development trends are outlooked.
Key words:  carbon fiber    composite    interface    characterization method
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  O6-1  
基金资助: “科技助力经济2020”重点专项“高性能绿色水性工业涂料涂装应用及产业化”项目(2020ZLHJ02);中国科学院过程工程研究所多相复杂系统国家重点实验室开放基金资助(MPCS-2021-D-11)
通讯作者:  *张冬海,中科院过程工程研究所正高级工程师,博士研究生导师,全国专业标准化技术委员会委员。主要研究方向为无机/有机复合功能材料,通过有机基体结构修饰及无机颗粒的制备、表/界面设计等制备高性能的功能化复合材料。dhzhang@ipe.ac.cn
陈运法,中科院过程工程研究所研究员、博士研究生导师。1984年本科毕业于河北矿冶学院,1987年获中国科学院化工冶金所硕士学位,1993年获法国斯特拉斯堡路易-巴斯德大学博士学位。主要从事纳米功能材料与组装技术、环境净化材料及工程应用等研究工作,发表SCI论文280余篇,申请发明专利100余项,出版专著3部,获国家发明奖、国家专利奖各1项。chenyf@ipe.ac.cn   
作者简介:  李美琪,2020年6月于河北工业大学获得工学学士学位。现为中科院过程工程研究所硕士研究生。主要研究方向为有机/无机复合材料。
引用本文:    
李美琪, 李晓飞, 王瑞涛, 聂林峰, 张润, 张冬海, 陈运法. 碳纤维增强聚合物基复合材料界面特性研究进展[J]. 材料导报, 2023, 37(20): 22030247-12.
LI Meiqi, LI Xiaofei, WANG Ruitao, NIE Linfeng, ZHANG Run, ZHANG Donghai, CHEN Yunfa. Research Progress on the Interface Properties of Carbon Fiber Reinforced Polymer Matrix Composites. Materials Reports, 2023, 37(20): 22030247-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030247  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22030247
1 Li S, Sun T, Liu C, et al. Royal Society Open Science, 2018, 5(3), 111272.
2 Zhang D K, Wang G H, Fang D K, et al. New Chemical Materials, 2022, 50(1), 1(in Chinese).
张登科, 王光辉, 方登科, 等. 化工新型材料, 2022, 50(1), 1.
3 Clausi M, Toto E, Botti S, et al. Composites Science and Technology, 2019, 183, 107823.
4 Friedrich H E. Advanced Engineering Materials, 2003, 5(3), 105.
5 Xiang L, Xiao Y Z. In: Proceedings of the 2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence-RICAI 2019. Shanghai, 2019, pp. 310.
6 Wu G S, Ma L, Liu L, et al. Journal of Adhesion Science and Technology, 2015, 29(21), 2295.
7 Cho B G, Hwang S H, Park M, et al. Composites Part B-Engineering, 2019, 160, 436.
8 Liu L, Jia C, He J, et al. Composites Science and Technology, 2015, 121, 56.
9 Duchoslav J, Unterweger C, Steinberger R, et al. Polymer Degradation and Stability, 2016, 125, 33.
10 Drzal L, Rich M, Lloyd P. Journal of Adhesion, 1983, 16(1), 1.
11 Li X C. The effects of reactive carbon nanotubes on interface bonding and mechanical properties of fiber reinforced composites. Master’s Thesis, Beijing University of Chemical Technology, China, 2011(in Chinese).
李晓超. 活性碳纳米管对纤维复合材料界面及力学性能影响. 硕士学位论文, 北京化工大学, 2011.
12 E J, Jin Y, Deng Y, et al. Advanced Materials Interfaces, 2018, 5(1), 1701052.
13 Xu P, Yu Y, Guo Z, et al. Composites Science and Technology, 2019, 171, 252.
14 Lee Y S, Lee B K. Carbon, 2002, 40(13), 2461.
15 Zisman W A. Advances in Chemistry, 1964, 43(1), 1.
16 Hughes J. D. H. Composites Science and Technology, 1991, 41(1), 13
17 Zabihi O, Ahmadi M, Li Q, et al. Composites Science and Technology, 2017, 148, 49.
18 Johnston J P, Koo B, Subramanian N, et al. Composites Part B-Engineering, 2017, 111, 27.
19 Norio I, Eleni P, Yhihiro S, et al. Composites Part A, 1998, 29, 965.
20 Demir B, Henderson L C, Walsh T R. ACS Applied Materials & Interfaces, 2017, 9(13), 11846.
21 Lin J S. Polymers & Polymer Composites, 2000, 8(2), 107.
22 Ma L, Wu G, Zhu Y, et al. Polymer Composites, 2018, 39, E2381.
23 He J M, Huang Y D. Journal of Applied Polymer Science, 2007, 106(4), 2231.
24 Liu G J. Modern Paint & Finishing, 2006(12), 13.(in Chinese).
刘国杰. 现代涂料与涂装, 2006(12), 13.
25 Zhou Y, Fan M, Chen L. Composites Part B-Engineering, 2016, 101, 31.
26 Deng S, Ma W, Zhou X, et al. Composite Interfaces, 2012, 19(8), 499.
27 Semoto T, Tsuji Y, Tanaka H, et al. Journal of Physical Chemistry C, 2013, 117(47), 24830.
28 Chen L, Hu Z, Wu Z, et al. Composites Part a-Applied Science and Manufacturing, 2017, 96, 1.
29 Smith I. Polymer, 1961, 2(1), 96.
30 Liu H, Li M, Lu Z Y, et al. Macromolecules, 2011, 44(21), 8650.
31 Deng C. Effects of electrophoretic ally deposited carbon nanotubes and graphene oxide coatings on interfacial properties of carbon fiber composite. Ph. D. Thesis, Northwestern Polythechnical University, China, 2016(in Chinese).
邓超. 纳米碳电泳沉积对碳纤维复合材料界面性能的影响. 博士学位论文, 西北工业大学, 2016.
32 He M. Research of establishing phthalocyanine-based interphase on the interfacial properties of carbon fiber composites. Ph. D. Thesis, Beijing University of Chemical Technology, China, 2020(in Chinese).
何梅. 碳纤维表面酞菁结构的界面相构建及其复合材料界面性能研究. 博士学位论文, 北京化工大学, 2020.
33 Jia X, Li G, Liu B, et al. Composites Part a-Applied Science and Manufacturing, 2013, 48, 101.
34 Lopez-manchado M, Valentini L, Biagiotti J, et al. Carbon, 2005, 43(7), 1499.
35 Schadler L S, Giannaris S C, Ajayan P M. Applied Physics Letters, 1998, 73(26), 3842.
36 Carroll B J. Journal of Colloid and Interface Science, 1976, 57(3), 488.
37 Yamaki J I, Katayama Y. Journal of Applied Polymer Science, 1975, 19(10), 2897.
38 Kang S K, Lee D B, Choi N S. Composites Science and Technology, 2009, 69(2), 245.
39 Shui X Y, Liu M, Zhu Y F, Acta Materiae Compositae Sinica, 2016, 33(2), 273(in Chinese).
水兴瑶, 刘猛, 朱曜峰, 等. 复合材料学报, 2016, 33(2), 273.
40 Bismarcka A, Kumur M E, Sprnger J. Journal of Colloid and Interface Science, 1999, 210(1), 60.
41 Pucci M F, Seghini M C, Liotier P J, et al. Composites Part B: Engineering, 2017, 109, 72.
42 Peng Q, Li Y, He X, et al. Composites Science and Technology, 2013, 74, 37.
43 Chen J, Wang K, Zhao Y. Composites Science and Technology, 2018, 154, 175.
44 Fan W, Li J L, Zheng Y Y. Polymer Testing, 2015, 44, 177.
45 Zhang M, Zhu B, Wang Q F, et al. Fiber Composites, 2007(2), 21.(in Chinese).
张敏, 朱波, 王启芬, 等. 纤维复合材料, 2007(2), 21.
46 Jin L. Effect of surface modification on interfacial properties of carbon fiber/epoxy composites. Master’s Thesis, Changchun University of Technology, China, 2020(in Chinese).
金琳. 表面修饰对碳纤维/环氧树脂复合材料界面性能的影响. 硕士学位论文, 长春工业大学, 2020.
47 Zhang D H, Ye L, Chen Y F, et al. Composites Science and Technology, 2012, 72(3), 412.
48 Li Y, Peng Q, He X, et al. Journal of Materials Chemistry, 2012, 22(36), 18748.
49 Shi L, Song G, Li P, et al. Composites Science and Technology, 2021, 201, 108522.
50 Xu H, Zhang X, Liu D, et al. Composites Part B-Engineering, 2016, 93, 244.
51 Lindsay B, Abel M L, Watts J F. Carbon, 2007, 45(12), 2433.
52 Yao X, Gao X, Jiang J, et al. Composites Part B-Engineering, 2018, 132, 170.
53 Ma L, Wu G, Zhu Y, et al. Polymer Composites, 2018, 39, 2381.
54 Peng Q, He X, Li Y, et al. Journal of Materials Chemistry, 2012, 22(13), 5928.
55 Jin L, Jiang Y, Zhang M, et al. Scientific Reports, 2018, 8, 6268.
56 Pathak, Borah M, Gupta A, et al. Composites Science and Technology, 2016, 135, 28.
57 Ma L, Meng L, Wu G, et al. Composites Science and Technology, 2015, 117, 289.
58 Zheng X, You J C, Zhu Y T, et al. Acta Polymerica Sinica, 2022, 53(5), 539.
59 Wu Z J, Fang J H, Peng H Y, et al. Synthetic Lubricants, 2020, 47(2), 41(in Chinese).
吴兆杰, 方建华, 彭宏业, 等. 合成润滑材料, 2020, 47(2), 41.
60 Zheng X, You J C, Zhu Y T, et al. Acta Polymerica Sinica, 2022, 53(5), 539(in Chinese).
郑鑫, 由吉春, 朱雨田, 等. 高分子学报, 2022, 53(5), 539.
61 Yang J M, Zhang H M, Wang X, et al. Physics and Engineering, 2014, 24(4), 26.(in Chinese).
杨金梅, 张海明, 王旭, 等. 物理与工程, 2014, 24(4), 26.
62 Yang W C, Liu D F, Gao X, et al. China Port Science and Technology, 2022, 4(2), 30.(in Chinese).
杨文超, 刘殿方, 高欣, 等. 中国口岸科学技术, 2022, 4(2), 30.
63 Wang H W, Wang J H, Zhu J Y, et al. Composites Science and Engineering, 2003(3), 42.(in Chinese).
王恒武, 王继辉, 朱京杨, 等. 复合材料科学与工程, 2003(3), 42.
64 Zhou J, Li Y, Li N, et al. Composites Science and Technology, 2016, 133, 173.
65 Qi G, Zhang B, Du S, et al. Composite Structures, 2017, 167, 1.
66 Zhang Q, Wu J, Gao L, et al. Polymer, 2016, 90, 193.
67 Yao H, Sui X, Zhao Z, et al. Applied Surface Science, 2015, 347, 583.
68 Han S H, Oh H J, Lee H C, et al. Composites Part B: Engineering, 2013, 45(1), 172.
69 Tian Y, Zhang H, Zhang Z. Composites Part a-Applied Science and Manufacturing, 2017, 98, 1.
70 Graupner N, Roessler J, ZiegmannI G, et al. Composites Part a-Applied Science and Manufacturing, 2014, 63, 133
71 Penn L, Bowler E. Surface and Interface Analysis, 1981, 3(4), 161.
72 Stojcevski F, Hilditch T B, Gengenbach T R, et al. Composites Part a-Applied Science and Manufacturing, 2018, 114, 212.
73 Miller B, Muri P, Rebenffld L. Composites Science and Technology, 1987, 28(1), 17.
74 Kang S K, Lee D B, Choi N S. Composites Science and Technology, 2009, 69(2), 245.
75 Lee M W, Wang T Y, Tsai J L. Composites Part B-Engineering, 2016, 98, 308.
76 Nishikawa M, Okabe T, Hemmi K, et al. International Journal of Solids and Structures, 2008, 45(14-15), 4098.
77 Yao X, Jiang J, Xu C, et al. Fibers and Polymers, 2017, 18(7), 1323.
78 Yang P J, Yuan J M, He L P. Materials Reports, 2017, 31(7), 129(in Chinese).
杨平军, 袁剑民, 何莉萍. 材料导报, 2017, 31(7), 129.
79 Bennett S, Johnson D. Carbon, 1979, 17(1), 25.
80 Dilsiz N, Wightman J P. Carbon, 1999, 37(7), 1105.
81 Dilsiz N, Erinc N, Bayramli E, et al. Carbon, 1995, 33(6), 853.
82 Paiva M C, Bernardo C A, Nardin M. Carbon, 2000, 38(9), 1323.
83 Hou F H, Deng H B, Li C J, et al. Fiber Composites, 2008(3), 18(in Chinese).
侯锋辉, 邓红兵, 李崇俊, 等. 纤维复合材料, 2008(3), 18.
84 Tiwari S, Bijwe J. In: 2nd International Conference on Innovations in Automation and Mechatronics Engineering. Vallabh Vidyanagar, 2014, pp. 505.
85 Wang Z M, Yamashita N, Wang Z X, et al. Journal of Colloid and Interface Science, 2004, 276(1), 143.
86 Park S J, Kim B J. Materials Science & Engineering A, 2005, 408(1-2), 269.
87 Yang Y G, He F, Wang M Z, et al. Carbon, 1999(1), 15(in Chinese).
杨永岗, 贺福, 王茂章, 等. 炭素, 1999(1), 15.
88 Du H L, Qi J G, Pang H T, et al. Materials Protection, 2003(2), 16(in Chinese).
杜慧玲, 齐锦刚, 庞洪涛, 等. 材料保护, 2003(2), 16.
89 Lee Y S, Lee B K, Rho J S. Korean Journal of Chemical Engineering, 2003, 20(1), 151.
90 Yu J, Meng L, Fan D, et al. Composites Part B-Engineering, 2014, 60, 261.
91 Zhang G, Sun S, Yang D, et al. Carbon, 2008, 46(2), 196.
92 Zhang M. Study on the key factors of interfacial bonding strength of carbon fiber reinforced resin composites. Ph. D. Thesis, Shandong University, China, 2010(in Chinese).
张敏. 碳纤维增强树脂基复合材料界面结合强度关键影响因素研究. 博士学位论文, 山东大学, 2010.
93 Qian X, Wang X F, Ouyang Q, et al. Applied Surface Science, 2012, 259, 238.
94 Liu J, Tian Y, Chen Y, et al. Applied Surface Science, 2010, 256(21), 6199.
95 Gulyas J, Foldes E, Lazar A, et al. Composites Part a-Applied Science and Manufacturing, 2001, 32(3-4), 353.
96 Fukuna A, Ueda S. Composites Science and Technology, 2000, 60(2), 249.
97 Guo Y X, Liu J, Liang J Y. Journal of Materials Science & Technology, 2005, 21(3), 371.
98 Peng J, Zhang J, Jian X G, et al. Materials Reports, 1999(2), 48(in Chinese).
彭静, 张军, 蹇锡高, 等. 材料导报, 1999(2), 48.
99 Zhang S B, Liu F J, Wang H J, et al. In: 17th National Conference on Composite Materials. Beijing, 2012, pp. 1114(in Chinese).
张淑斌, 刘福杰, 王浩静, 等. 第17届全国复合材料学术会议. 北京, 2012, pp. 1114.
100 Lu C, Qiu S, Lu X, et al. Polymers, 2019, 11(5), 753.
101 Xie J, Xin D, Cao H, et al. Surface & Coatings Technology, 2011, 206(2-3), 191.
102 Montes-moran M A, Martinez-alonso A, Tascon J M D, et al. Compo-sites Part a-Applied Science and Manufacturing, 2001, 32(3-4), 361.
103 Han S H, Oh H J, Kim S S. Composites Part B-Engineering, 2014, 60, 98.
104 Kamar N T, Drzal L T, Lee A, et al. Polymer, 2017, 111, 36.
105 Xu J M, Li J. Polymer Materials Science & Engineering, 1990(1), 66(in Chinese).
许嘉敏, 李军. 高分子材料科学与工程, 1990(1), 66.
106 Gibson R F. Composite Structures, 2010, 92(12), 2793.
107 Zhang F H, Wang R G, He X D, et al. Journal of Materials Science, 2009, 44(13), 3574.
108 Chen L J, Wu F Q, Zhang X Y, et al. China Synthetic Resin and Plastics, 2008, 25(1), 75.(in Chinese).
陈立军, 武凤琴, 张欣宇, 等. 合成树脂及塑料, 2008, 25(1), 75.
109 Ma L C. Chemical modification of carbon fiber surface and study of its composite interface performance. Ph. D. Thesis, Harbin Institute of Technology, China, 2016(in Chinese).
马丽春. 碳纤维表面化学修饰及其复合材料界面性能研究. 哈尔滨工业大学, 2016.
110 Yang Y W, Yu H W, Wang X, et al. China Elastomerics, 2021, 31(1), 71(in Chinese).
杨玉伟, 余红伟, 王轩, 等. 弹性体, 2021, 31(1), 71.
111 Xuan Z L, Yi J Z, Du S G. Materials Reports, 2006(S2), 443(in Chinese).
宣兆龙, 易建政, 杜仕国. 材料导报, 2006(S2), 443.
112 Tang Y, Ye L, Zhang D, et al. Composites Part a-Applied Science and Manufacturing, 2011, 42(12), 1943.
113 Peng G Q, Yang J J, Cao Z H, et al. Materials Reports, 2011, 25(7), 1(in Chinese).
彭公秋, 杨进军, 曹正华, 等. 材料导报, 2011, 25(7), 1.
114 Bedi H S, Padhee S S, Agnihotri P K. Polymer Composites, 2018, 39, 1184.
115 Fang H D. Crystallization kinetics of carbon fiber-reinforced thermoplastic polymer composites. Ph. D. Thesis, Dalian University of Technology, China, 2021(in Chinese).
方海东. 碳纤维增强热塑性聚合物基复合材料结晶动力学研究. 博士学位论文, 大连理工大学, 2021.
116 Xing K, Xu H B, Yan C, et al. Composites Science and Engineering, 2019(5), 110(in Chinese).
邢开, 徐海兵, 颜春, 等. 复合材料科学与工程, 2019(5), 110.
117 Lin Z Y, Zeng H M. Polymer Bulletin, 2004(5), 56.(in Chinese).
林志勇, 曾汉民. 高分子通报, 2004(5), 56.
118 Wei Y Z, Liang L, Wu J W, et al. Chemistry and Adhesion, 2021, 43(4), 259.(in Chinese).
魏运召, 梁磊, 吴健伟, 等. 化学与粘合, 2021, 43(4), 259.
[1] 许兵, 姚兴洁, 刘佳, 张旭, 杨晓彤, 郭培勋, 张新玉. 面向太阳能界面蒸发的纳米光热材料与系统设计研究[J]. 材料导报, 2023, 37(S1): 23030028-8.
[2] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[3] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[4] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[5] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[6] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[7] 贾峰峰, 俄松峰, 陈珊珊, 宁逗逗, 黄吉振, 陆赵情. 碳纤维湿法造纸工艺及碳纤维纸基功能材料的研究进展[J]. 材料导报, 2023, 37(8): 21070135-9.
[8] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[9] 王振军, 阎凤凤, 张含笑, 梁晴陨. 乳化沥青与RAP再生界面融合特征研究进展[J]. 材料导报, 2023, 37(7): 21030199-10.
[10] 谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
[11] 罗重阳, 李宇杰, 王丹琴, 刘双科, 陈宇方, 郑春满. 改性电解液促进均匀锂沉积的研究进展[J]. 材料导报, 2023, 37(6): 21070209-11.
[12] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[13] 张隽, 冯瑞成, 姚永军, 杨晟泽, 曹卉, 付蓉, 李海燕. 片层状TiAl-Nb合金中γ/γ界面体系拉伸行为的原子模拟[J]. 材料导报, 2023, 37(6): 21080280-6.
[14] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[15] 张新强, 唐伯明, 曹雪娟, 杨晓宇, 唐乃膨, 朱洪洲. 道路沥青材料VOCs释放特性与抑制措施研究进展[J]. 材料导报, 2023, 37(6): 21070149-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed