Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 22080137-7    https://doi.org/10.11896/cldb.22080137
  无机非金属及其复合材料 |
SiO2气凝胶对超细水泥基材料性能影响的试验研究
韩风雷1,2,*, 刘艳1,2, 刘涛1,2, 张学富1,2, 吕洋1,2, 扎西尼玛3
1 重庆交通大学山区桥梁及隧道工程国家重点实验室,重庆 400074
2 重庆交通大学土木工程学院,重庆 400074
3 西藏天路股份有限公司,拉萨 850000
Experimental Study on the Influence of Silica Aerogel on the Properties of Superfine-cement Composites
HAN Fenglei1,2,*, LIU Yan1,2, LIU Tao1,2, ZHANG Xuefu1,2, LYU Yang1,2, ZHAXI Nima3
1 State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
3 Tibet Tianlu Co., Ltd., Lhasa 850000, China
下载:  全 文 ( PDF ) ( 13830KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 SiO2气凝胶水泥基材料具有优异的隔热、防火、轻质等性能,但较低的力学强度限制了其应用潜力。而超细水泥活性高、水化速度快的特点可促进其抗压、抗折强度的生长,因此为获得兼具强度和隔热特性的气凝胶水泥基材料,试验选用超细水泥胶凝材料,以SiO2气凝胶颗粒等体积替换砂的方法来制备试件。基于室内试验研究了SiO2气凝胶和砂的总体积分数固定为60%的情况下,SiO2气凝胶掺量对超细水泥基材料的流动度、干密度、吸水率、导热系数、力学性能和微观结构的影响。结果表明:随气凝胶掺量从0%增至60%,材料的流动度下降了7.3%~22.3%,干密度逐渐降低而吸水率增加,导热系数急剧减小,饱水状态下的导热系数从2.58 W/(m·K)下降到0.49 W/(m·K),干燥状态下的导热系数从2.55 W/(m·K)下降到0.24 W/(m·K),保温隔热性能显著提升;抗压强度从66.3 MPa降至14.1 MPa,下降了76.0%,抗折强度从12.9 MPa降至3.1 MPa,下降了78.7%。SEM电镜扫描与EDS元素能谱分析表明,气凝胶颗粒与水泥基质之间存在界面间隙,其Ca/Si物质的量比为0.64~1.13,SiO2气凝胶颗粒与超细水泥孔隙溶液发生碱-硅反应生成低钙硅比的C-S-H(水化硅酸钙)凝胶,从而提高了界面过渡区的密实度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩风雷
刘艳
刘涛
张学富
吕洋
扎西尼玛
关键词:  SiO2气凝胶  超细水泥  力学性能  导热系数  碱-硅酸盐反应  微观结构    
Abstract: Due to the lower mechanical strength, the application potential of silica aerogel cement-based materials with excellent thermal insulation, fireproofing and lightweight properties was greatly under restriction. The characteristics of high activity and fast hydration speed of superfine cement could promote the growth of compressive and flexural strength. Therefore, the superfine cement was chosen as the cementitious material in this experiment, to prepare aerogel cement-based materials with the property of both thermal insulation and strength. Based on replacing the equal volume of sand by SiO2 aerogel particles, the fluidity, dry density, water absorption, thermal conductivity, mechanical properties, and microstructure of cementitious materials were investigated under the different dosages of silica aerogel (the volume of sand and aerogel was 60%). The results showed that with the increase of aerogel content from 0% to 60%, the material fluidity decreased by 7.3%—22.3%, and the dry density gradually decreased while the water absorption increased. The thermal conductivity in the saturated and dry state decreased separately from 2.58 W/(m·K) to 0.49 W/(m·K) and from 2.55 W/(m·K) to 0.24 W/(m·K), indicating a significant improvement on the perfor-mance of thermal insulation. The compressive strength and flexural tensile strength ranged from 66.3 MPa to 14.1 MPa, and from 12.9 MPa to 3.1 MPa, which was decreased by 76.0% and 78.7% respectively compared with the sample unincorporated aerogel. Based on the analysis of SEM and EDS, there was a gap between the aerogel particles and surrounding cement matrix, and the Ca/Si atomic number ratio between the gape ranged from 0.64 to 1.13. The product of alkali-silicate reaction was C-S-H (calcium silicate hydrate) between silica aerogel and ultra-fine cement pore solution, which was helpful to improve the strength of interfacial transition zone.
Key words:  silica aerogel    superfine cement    mechanical property    thermal conductivity    alkali silicate reaction    microscopic structure
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  TU528  
基金资助: 在渝本科高校与中科院所属院所合作项目 (HZ2021009); 中国博士后基金(2020M683710XB); 西藏自治区自然基金(XZ202101ZR0036G); 峨汉高速公路工程科研项目(LH-HT-45); 重庆交通大学创新创业训练项目(2020S0015)
通讯作者:  * 韩风雷,副教授,硕士研究生导师。2017年中国科学院西北生态环境资源研究院岩土工程专业博士毕业后到重庆交通大学土木工程学院工作至今。目前主要从事隧道与地下工程水泥基新型材料研究。发表论文20余篇,获授权专利6项。Hanfl2017@cqjtu.edu.com   
引用本文:    
韩风雷, 刘艳, 刘涛, 张学富, 吕洋, 扎西尼玛. SiO2气凝胶对超细水泥基材料性能影响的试验研究[J]. 材料导报, 2023, 37(15): 22080137-7.
HAN Fenglei, LIU Yan, LIU Tao, ZHANG Xuefu, LYU Yang, ZHAXI Nima. Experimental Study on the Influence of Silica Aerogel on the Properties of Superfine-cement Composites. Materials Reports, 2023, 37(15): 22080137-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080137  或          http://www.mater-rep.com/CN/Y2023/V37/I15/22080137
1 Beardi U. Nanotechnology in Eco-efficient Construction (Second Edition), 2019, 395.
2 Dai Q Y. Bulletin of the Chinese Ceramic Society, 2020, 39(9), 3014 (in Chinese).
戴勤友. 硅酸盐通报, 2020, 39(9), 3014.
3 Marques B, Almeida J, Tadeu A, et al. Journal of Building Enginee-ring, 2021, 39, 102297.
4 Wang H H. Paint and Coatings Industry, 2020, 50(8), 81 (in Chinese).
王焕焕. 涂料工业, 2020, 50(8), 81.
5 Zhang K, Lu Y M, Lu H S. Construction Economics, 2022, 43(3), 14 (in Chinese).
张凯, 陆玉梅, 陆海曙. 建筑经济, 2022, 43(3), 14.
6 Liu H L, Xuan Y J, An G Q, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(4), 1068 (in Chinese).
刘洪丽, 宣玉杰, 安国庆, 等. 硅酸盐通报, 2019, 38(4), 1068.
7 Ng S, Jelle B P, Sandberg L I C, et al. Construction and Building Materials, 2015, 77, 307
8 Welsch T, Schnellenbach-Held M. In: Conference Record of the 2017 fib Symposium on Technology and Engineering Meet. Maastricht, 2017, pp. 117.
9 Hub A, Zimmermann G, Knippers J. Concrete and reinforced concrete construction, 2013, 108(9), 654.
10 Schnellenbach-Held M, Welsch T. High tech concrete: where technology and engineering meet, Springer International Publishing, Germany, 2018.
11 Ratke L. Concrete and Reinforced Concrete Construction, 2008, 103(4), 236.
12 Kim S, Seo J, Cha J, et al. Construction and Building Materials, 2013, 40, 501.
13 Gao T, Jelle B P, Gustavsen A, et al. Construction and Building Materials, 2014, 52, 130.
14 Feng J C, Li T, Zhu P H, et al. Concrete, 2018(1), 124 (in Chinese).
封金财, 李涛, 朱平华, 等. 混凝土, 2018(1), 124.
15 Ng S, Jelle B P, Sthli T. Cement and Concrete Composites, 2016, 72, 213.
16 Aygrmez Y. Innovative Infrastructure Solutions, 2022, 7(3), 1.
17 Wu F F, Shi K B, Dong S K, et al. Nuclear Science and Techniques, 2016, 32(4), 119 (in Chinese).
吴福飞, 侍克斌, 董双快, 等. 农业工程学报, 2016, 32(4), 119.
18 Stefanidon M, Ysardaka E C, Pavlidon E. Materials today: proceedings, 2017, 4(7), 6908.
19 Ali H, Hamid R, Davood M, et al. Construction and Building Materials, 2017, 152, 192.
20 Zhang S Y, Cong G W, Sun J Q, et al. Journal of Qingdao Agricultural University: Natural Science Edition, 2021, 38(3), 224 (in Chinese).
张思雨, 丛干文, 孙嘉卿, 等. 青岛农业大学学报:自然科学版, 2021, 38(3), 224.
21 Zhao M, Zhang M T, Peng J H. Non-metallic Mines, 2020, 43(4), 41 (in Chinese).
赵敏, 张明涛, 彭家惠. 非金属矿, 2020, 43(4), 41.
22 Guo D M, Tan J S, Xiao Z X, et al. Journal of Henan Polytechnic University (Natural Science Edition), 2017, 36(5), 1 (in Chinese).
郭东明, 谭霁爽, 肖正星, 等. 河南理工大学学报(自然科学版), 2017, 36(5), 1.
23 ZHANG Y Q. Microscopic experimental study and theoretical analysis of permeability characteristics of superfine cement. Master's Thesis, Shandong University of Science and Technology, China, 2010 (in Chinese).
张彦奇. 超细水泥渗透特性微观试验研究及理论分析. 硕士学位论文, 山东科技大学, 2010.
24 Zhou M R, Peng X X, Su B T, et al. Bulletin of The Chinese Ceramic Society, 2017, 36(5), 1673 (in Chinese).
周茗如, 彭新新, 苏波涛, 等. 硅酸盐通报, 2017, 36(5), 1673.
25 Al Zaidi I K, Demirel B, Atis C D, et al. Structural Concrete, 2020, 21, 1123.
26 Adhikary S K, Ashish D K, Rudionis Y. Energy and Buildings, 2021, 245, 111058.
27 Zhao J, Lu X Y. China Concrete, 2019, 125(11) 48 (in Chinese).
赵筠, 路新瀛. 混凝土世界, 2019, 125(11) 48.
28 Zhu P H, Sun Y Q, Feng J C, et al. Concrete, 2017(12), 132 (in Chinese).
朱平华, 孙远乾, 封金财, 等. 混凝土, 2017(12), 132.
29 Wu Y P, Wang J Y, Monteiro P J M, et al. Construction and Building Materials, 2015, 87, 100.
30 Demirboga R, Kan A. Construction and Building Materials, 2012, 35, 730.
31 Fickler S, Milow B, Ratke L, et al. Energy Encyclopedia, 2015, 78, 405.
32 Oluokun F A. ACI Materials Journal, 1991, 88(3), 302.
33 Babu D S, Babu K G, Wee T H. Cement and Concrete Research, 2005, 35(6), 1218.
34 Chen Y Z, Zhong H X, Yin W S, et al. Bulletin of The Chinese Ceramic Society, 2020(6), 1798 (in Chinese).
陈友治, 钟浩轩, 殷伟淞, 等. 硅酸盐通报, 2020(6), 1798.
35 He Y J, Zhao X G, Lu L N, et al. Journal of Wuhan University of Technology: Materials Science, 2011, 26(4), 770.
36 Zhu P H, Samuel B, Zhao S Y, et al. Cement and Concrete Composites, 2019, 104, 103414.
37 Becker P F B, Effting C, Schackow A. Cement and Concrete Composites, 2022, 125, 104283.
38 Hao L W, Wang Y, Yang F H, et al. American Journal of Civil Engineering, 2015, 3(5), 183.
39 Yu R, Spiesz P, Brouwers H. Construction and Building Materials, 2014, 65, 140.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[3] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[4] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[5] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[6] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[7] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[8] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[9] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[10] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[11] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[12] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[13] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[14] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[15] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed