Please wait a minute...
材料导报  2023, Vol. 37 Issue (14): 22030117-6    https://doi.org/10.11896/cldb.22030117
  金属与金属基复合材料 |
TiB2纳米涂层改性碳纤维增强Mg基复合材料的微观结构及力学性能
吴佳洪1,2, 王文广2,3,*, 倪丁瑞2, 肖伯律2, 李荣德1, 林楠4, 武秋生4, 夏津4
1 沈阳工业大学材料科学与工程学院,沈阳 110870
2 中国科学院金属研究所,沈阳 110016
3 辽宁石油化工大学机械工程学院,辽宁 抚顺 113001
4 上海机电工程研究所,上海 201109
Microstructure and Mechanical Properties of Mg Matrix Composites Reinforced with Nano-TiB2 Coated Continuous Carbon Fibers
WU Jiahong1,2, WANG Wenguang2,3,*, NI Dingrui2, XIAO Bolv2, LI Rongde1, LIN Nan4, WU Qiusheng4, XIA Jin4
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China
4 Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China
下载:  全 文 ( PDF ) ( 15562KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用新颖的溶胶-凝胶与碳热还原相结合的方法,对M55J连续碳纤维(Cf)表面进行TiB2纳米涂层改性。首先,制备了掺杂五硼酸铵(NH4B5O8)的TiO2溶胶(0.2 mol/L)(Ti与B的物质的量比为1∶2),然后将其均匀涂覆到Cf表面。XPS分析表明,经1 350 ℃烧结120 min后,Cf表面涂层发生原位反应并生成了TiB2。采用压力浸渗法分别制备了体积分数为40%和50%的Cf增强镁基(Cf/Mg)复合材料,其抗弯强度分别达到720 MPa和870 MPa。然而,对比实验表明Mg基体不能浸渗到无涂层的Cf预制体中。HRTEM分析表明,厚度为20~30 nm的界面层由TiB2和少量的TiC、TiO2纳米颗粒组成。Cf表面的TiB2纳米涂层可以改善Cf与Mg基体之间的润湿性,提高Cf/Mg复合材料的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴佳洪
王文广
倪丁瑞
肖伯律
李荣德
林楠
武秋生
夏津
关键词:  溶胶-凝胶  碳热还原  TiB2纳米涂层  Cf/Mg复合材料  力学性能    
Abstract: The surface of M55J continuous carbon fibers (Cf) was modified with TiB2 nano-coating, using a combination method of sol-gel and carbot-hermal reduction. At first, TiO2 sol (0.2 mol/L) doped with ammonium pentaborate was prepared as the source of TiO2 and B element, and the molar ratio of Ti to B was 1∶2, and then the doped sol was coated on the surface of Cf. After sintering at 1 350 ℃ for 120 min, the in-suit TiB2 could be formed on the surface of Cf, according to the XPS analysis. Following, 40vol% and 50vol% Cf reinforced Mg matrix (Cf/Mg) composites were fabricated by pressure infiltration method, producing the bending strengths of 720 MPa and 870 MPa, respectively. In contrast, the Mg matrix could not be infiltrated into the uncoated Cf preform. The observation of high-resolution transmission electron microscopy (HRTEM) indicated that the interfacial layer in thickness of 20—30 nm is composed of TiB2 and a small quantity of TiC and TiO2 nanoparticles. It is indicated that in-suit TiB2 coating on Cf could improve the wettability between Cf and Mg matrix, and increase the mechanical properties of Cf/Mg compo-site.
Key words:  sol-gel    carbothermal reduction    TiB2 nano-coating    Cf/Mg composite    mechanical property
出版日期:  2023-07-25      发布日期:  2023-07-24
ZTFLH:  TG148  
基金资助: 国家重点研发计划项目(2021YFA1600704);国家自然科学基金重大项目(52192594);国家自然科学基金项目(52120105001;52192594;52192595;519131009)
通讯作者:  *王文广,辽宁石油化工大学教授、硕士研究生导师,主要研究方向为陶瓷和碳材料(金刚石、碳纤维、碳纳米管、石墨烯等)增强金属基复合材料的微观结构分析,特别是从纳米尺度研究材料的微观结构与性能特征之间的内在联系,并从事金属材料和金属基复合材料的疲劳力学性能研究。在国内外重要学术期刊发表论文60余篇,主持和参与国家、部委等科技项目10余项。wgwang@imr.ac.cn   
作者简介:  吴佳洪,2019年6月毕业于沈阳工业大学材料科学与工程学院,现为沈阳工业大学材料科学与工程学院硕士研究生,在王文广教授的指导下进行研究。目前主要研究领域为碳纤维增强镁基复合材料。
引用本文:    
吴佳洪, 王文广, 倪丁瑞, 肖伯律, 李荣德, 林楠, 武秋生, 夏津. TiB2纳米涂层改性碳纤维增强Mg基复合材料的微观结构及力学性能[J]. 材料导报, 2023, 37(14): 22030117-6.
WU Jiahong, WANG Wenguang, NI Dingrui, XIAO Bolv, LI Rongde, LIN Nan, WU Qiusheng, XIA Jin. Microstructure and Mechanical Properties of Mg Matrix Composites Reinforced with Nano-TiB2 Coated Continuous Carbon Fibers. Materials Reports, 2023, 37(14): 22030117-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030117  或          http://www.mater-rep.com/CN/Y2023/V37/I14/22030117
1 Wu G H, Kuang Z Y. Strategic Study of Chinese Academy of Engineering, 2020, 22(2), 79 (in Chinese).
武高辉, 匡泽洋. 中国工程科学, 2020, 22(2), 79.
2 Song M H, Wu G H, Wang C Y, et al. Corrosion Science and Protection Technology, 2008(5), 321 (in Chinese).
宋美慧, 武高辉, 王春雨, 等. 腐蚀科学与防护技术, 2008(5), 321.
3 Zhang K, Li H L. Aeronautical Manufacturing Technology, 1993(3), 23 (in Chinese).
张坤, 李华伦. 航空制造技术, 1993(3), 23.
4 Feldhoff A, Pippel E, Wolterdorf J. Advanced Engineering Materials, 2000, 2(8), 471.
5 Zhang P, Zhang Y Z, Yin F Z, et al. Nonferrous Metals, 2011, 63(1), 19 (in Chinese).
张萍, 张永忠, 尹法章, 等. 有色金属, 2011, 63(1), 19.
6 Wang W G, Xiao B L, Ma Z Y. Composites Science and Technology, 2012, 72(2), 152.
7 Reischer F, Pippel E, Woltersdorf J, et al. Materials Chemistry and Physics, 2007, 104(1), 83.
8 Li S L, Qi L H, Zhang T, et al. Micron, 2017, 101, 170.
9 Xiao P, Gao Y, Yang C, et al. Composites Part B:Engineering, 2020, 198, 108174.
10 Wang Y, Zeng X, Ding W. Scripta Materialia, 2006, 54(2), 269.
11 Wiedemann R, Oettel H, Jerenz M. Surface and Coatings Technology, 1997, 97(1-3), 313.
12 Fastner U, Steck T, Pascual A, et al. Journal of Alloys and Compounds, 2008, 452(1), 32.
13 Bouix J, Vincent H, Boubehira M, et al. Journal of the Less Common Metals, 1986, 117(1-2), 83.
14 Vincent H, Boubehira M, Bouix J. Materials Chemistry and Physics, 1986, 15(2), 113.
15 Ryu J, Ku S H, Lee H, et al. Advanced Functional Materials, 2010, 20(13), 2132.
16 Liu J, Zhang Y, Guo Z, et al. Composites Part A:Applied Science and Manufacturing, 2020, 142(10), 106258.
17 Ding Y, Floren M, Tan W. Biosurface and Biotribology, 2016, 2(4), 121.
18 Kobets L P, Deev I S. Composites Science and Technology, 1998, 57(12), 1571.
19 Li D F, Wang H J, Wang X K, et al. Spectroscopy and Spectral Analysis, 2007, 27(11), 2249 (in Chinese).
李东风, 王浩静, 王心葵, 等. 光谱学与光谱分析, 2007, 27(11), 2249.
20 Yu X, Fan H L, Liu Y, et al. Langmuir the ACS Journal of Surfaces and Colloids, 2014, 30(19), 5497.
21 Li H Q, Aulin Y V, Frazer L, et al. ACS Applied Materials and Interfaces, 2017, 9(8), 6655.
22 Ülker Gürbüz Beker, Ouz Recepolu, Nusret Bulutcu. Thermochimica Acta, 1994, 235(2), 211.
23 Minoshima K S. International Journal of Fatigue, 1994, 24(3), 197.
24 Clyne T W, Watson M C. Composites Science and Technology, 1991, 42(1-3), 25.
25 Sirivedin S, Fenner D N, Nath R B, et al. Composites Part A:Applied Science and Manufacturing, 2006, 37(11), 1936.
26 Sun Z, Hu X, Wang X, et al. Composites Communications, 2021, 24, 100640.
27 Pei R S, Chen G Q, Wang Y P, et al. Journal of Alloys and Compounds:an Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2018, 756, 8.
28 Reddy K M, Guo D Z, Song S X, et al. Science Advances, 2021, 7(8), eabc6714.
29 Qi L H, Li S L, Zhang T, et al. Composite Structures, 2019, 209, 328.
30 Sahoo S, Singh S K. Ceramics International, 2017, 43(17), 15561.
31 Pei L Z, Xiao H N. Journal of Materials Processing Technology, 2009, 209(4), 2122.
32 Wang W G, Xiao B L, Ma Z Y. Composites Science and Technology, 2013, 87, 69.
33 Wang W G, Zhang J F, Zan Y N, et al. Composites Part A:Applied Science and Manufacturing, 2022, 154, 106780.
34 Zhu C, Su Y, Zhang D, et al. Materials Science and Engineering A, 2020, 793(1-2), 139839.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[3] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[4] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[5] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[6] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[7] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[8] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[9] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[10] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[11] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[12] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[13] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[14] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[15] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed