Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21060043-9    https://doi.org/10.11896/cldb.21060043
  无机非金属及其复合材料 |
钙钛矿基气敏传感材料研究进展
魏宇, 姜丰, 张雯*
西安交通大学化学学院,西安 710049
Research Progress in Perovskite-based Gas Sensing Materials
WEI Yu, JIANG Feng, ZHANG Wen*
College of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
下载:  全 文 ( PDF ) ( 4925KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一种新型半导体材料,钙钛矿(ABY3) 除了晶体结构独特、带隙可调外,还具有高的载流子迁移率以及优异的化学稳定、热稳定、催化性能,在太阳能电池、光电探测、工业催化、气体传感等领域中显示出巨大的发展潜力,备受研究者的青睐。本文通过对其晶体结构和敏感机理的分析,综述了近年来钙钛矿基传感材料在气体传感领域的研究进展,系统梳理了影响传感响应的各种因素,并在此基础上概括了改善材料气敏性能的策略,最后总结了钙钛矿基材料在气体传感领域面临的挑战并展望了其未来发展。高效稳定、环保、低能耗的钙钛矿基材料是未来研究的重点,而自供电传感芯片、多信号耦合传感、微型化智能集成都可为其应用提供更广阔的空间。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏宇
姜丰
张雯
关键词:  钙钛矿  传感材料  气敏    
Abstract: As a new semiconductor material, perovskite (ABY3) has unique crystal structure, adjustable band gap, high carrier mobility and excellent chemical stability, thermal stability and catalytic performance. It shows great development potential in the fields of solar cells, photoelectric detection, industrial catalysis, gas sensing and so on. Based on the analysis of its crystal structure and sensing mechanism, this paper summarizes the research progress of perovskite in the field of gas sensing in recent years, systematically discusses various factors affecting the sensing response, and summarizes the strategies to improve the gas sensing properties of materials. Finally, the challenges of perovskite materials in the field of gas sensing are summarized, and their future development is prospected. Perovskite materials with high efficiency, stability, environmental protection and low energy consumption are the focus of future research, and self-powered sensing chip, multi signal coupling sensing and miniaturized intelligent integration will provide a broader development space for its application.
Key words:  perovskite    sensing material    gas sensing
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TP212  
基金资助: 陕西省自然科学基金(2020JM-027)
通讯作者:  *张雯,西安交通大学化学学院教授、硕士研究生导师。1992年、1999年在西北纺织工学院纺织化学系分别获得学士和硕士学位,2005年于西安交通大学材料科学与工程专业博士毕业,2006年在美国加州大学圣地亚哥分校访学半年,2013年在美国西北太平洋国家实验室访学一年。目前主要从事纳米功能材料与传感器件、金属有机骨架材料等方面的研究工作。发表论文60余篇,包括Advanced Materials、Monatshefte für Chemie、RSC Advances、Applied Thermal Engineering等。zhangwen@xjtu.edu.cn   
作者简介:  魏宇,2020年6月毕业于山西大学,获得理学学士学位。现为西安交通大学化学学院硕士研究生,在张雯教授的指导下进行研究。目前主要研究领域为纳米功能材料与传感器件。
引用本文:    
魏宇, 姜丰, 张雯. 钙钛矿基气敏传感材料研究进展[J]. 材料导报, 2023, 37(9): 21060043-9.
WEI Yu, JIANG Feng, ZHANG Wen. Research Progress in Perovskite-based Gas Sensing Materials. Materials Reports, 2023, 37(9): 21060043-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060043  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21060043
1 Li C Y, Liu D, Xu C Q, et al. Nature Communications, 2021, 12(1), 2950.
2 Righettoni M, Tricoli A, Gass S, et al. Analytica Chimica Acta, 2012, 738, 69.
3 Miyamoto A, Lee S, Cooray N F, et al. Nature Nanotechnology, 2017, 12(9), 907.
4 Li X B, He L Z, Li Y F, et al. ACS Nano, 2021, 15(7), 12453.
5 Liu Y, Pharr M, Salvatore G A. ACS Nano, 2017, 11(10), 9614.
6 Guo H Y, Pu X J, Chen J, et al. Science Robotics, 2018, 3(20), eaat2516.
7 Guo L L, Wang T, Wu Z H, et al. Advanced Materials, 2020, 32(45), 2004805.
8 Fan F Y, Zhang J J, Li J, et al. Sensors and Actuators B:Chemical, 2017, 241, 895.
9 Ambardekar V, Bandyopadhyay P P, Majumder S B. Materials Chemistry and Physics, 2021, 258, 123966.
10 Wang Y, Wu H T, Xu L, et al. Science Advances, 2020, 6(34), eabb9083.
11 Kong J, Franklin N R, Zhou C W, et al. Science, 2000, 287(5453), 622.
12 Galli I, Bartalini S, Borri S, et al. Physical Review Letters, 2011, 107(27), 270802.
13 Jing Z H, Zhan J H. Advanced Materials, 2008, 20(23), 4547.
14 Lupan O, Ursaki V V, Chai G, et al. Sensors and Actuators B:Chemical, 2010, 144(1), 56.
15 Hübner M, Simion C E, Tomescu-stanoiu A, et al. Sensors and Actuators B:Chemical, 2011, 153(2), 347.
16 Volanti D P, Felix A A, Orlandi M O, et al. Advanced Functional Materials, 2013, 23(14), 1759.
17 Lee C Y, Chiang C M, Wang Y H, et al. Sensors and Actuators B:Che-mical, 2007, 122(2), 503.
18 Wang C, Cheng X Y, Zhou X, et al. ACS Applied Materials & Interfaces, 2014, 6(15), 12031.
19 Kuang Q, Lao C S, Wang Z L, et al. Journal of the American Chemical Society, 2007, 129(19), 6070.
20 Liu Y, Jiao Y, Zhang Z L, et al. ACS Applied Materials & Interfaces, 2014, 6(3), 2174.
21 Fabbri E, Nachtegaal M, Binninger T, et al. Nature Materials, 2017, 16(9), 925.
22 Zhou H P, Chen Q, Li G, et al. Science, 2014, 345(6196), 542.
23 Ling H, Wu J C, Su F Y, et al. Nature Communications, 2021, 12(1), 1010.
24 Shin S S, Yeom E J, Yang W S, et al. Science, 2017, 356(6334), 167.
25 Song P, Wang Q, Zhang Z, et al. Sensors and Actuators B:Chemical, 2010, 147(1), 248.
26 You X, Wu J J, Chi Y W. Analytical Chemistry, 2019, 91(8), 5058.
27 Goodenough J B. Reports on Progress in Physics, 2004, 67(11), 1915.
28 Goldschmidt V M. Naturwissenschaften, 1926, 14(21), 477.
29 Li Z J, Li H, Wu Z L, et al. Materials Horizons, 2019, 6(3), 470.
30 Wang Z Y, Miao J Y, Zhang H X, et al. Journal of Hazardous Materials, 2020, 391, 122226.
31 Ghasdi M, Alamdari H. Sensors and Actuators B:Chemical, 2010, 148(2), 478.
32 Parkash O, Ganguly P, Ramarao G, et al. Materials Research Bulletin, 1974, 9(9), 1173.
33 Ngamou P H T, Bahlawane N. Chemistry of Materials, 2010, 22(14), 4158.
34 Kharton V V, Figueiredo F M, Kovalevsky A V, et al. Journal of the European Ceramic Society, 2001, 21(13), 2301.
35 Barsan N, Weimar U. Journal of Electroceramics, 2001, 7(3), 143.
36 Tong T, Chen J G, Jin D R, et al. Materials Letters, 2017, 197, 160.
37 Chen Q, Wang Y H, Wang M X, et al. Journal of Colloid and Interface Science, 2019, 543, 285.
38 Wang X F, Qin H W, Pei J L, et al. Journal of Rare Earths, 2016, 34(7), 704.
39 Wei W, Guo S J, Chen C, et al. Journal of Alloys and Compounds, 2017, 695, 1122.
40 Hao P, Qiu G, Song P, et al. Applied Surface Science, 2020, 515, 146025.
41 Hsu K C, Fang T H, Chen S H, et al. Ceramics International, 2019, 45(7), 8744.
42 Huang L, Bassir M, Kaliaguine S. Materials Chemistry and Physics, 2007, 101, 259.
43 Dai Z, Lee C S, Kim B Y, et al. ACS Applied Materials & Interfaces, 2014, 6(18), 16217.
44 Qin J, Cui Z D, Yang X J, et al. Sensors and Actuators B:Chemical, 2015, 209, 706.
45 Queralto A, Graf D, Frohnhoven R, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(6), 6023.
46 Xiao H X, Xue C, Song P, et al. Applied Surface Science, 2015, 337, 65.
47 Wang B Q, Yu Q, Zhang S F, et al. Sensors and Actuators B:Chemical, 2018, 258, 1215.
48 Zhang X D, Zhang W L, Cai Z X, et al. Ceramics International, 2019, 45(5), 5240.
49 Thirumalairajan S, Girija K, Mastelaro V R, et al. ACS Applied Materials & Interfaces, 2014, 6(16), 13917.
50 Zhang H M, Shimizu Y, Teraoka Y, et al. Journal of Catalysis, 1990, 121(2), 432.
51 Cao K, Cao E, Zhang Y J, et al. Sensors and Actuators B:Chemical, 2016, 230, 592.
52 Hao P, Qu G M, Song P, et al. Rare Metals, 2021, 40(6), 1651.
53 Benali A, Azizi S, Bejar M, et al. Ceramics International, 2014, 40(9), 14367.
54 Huang H T, Zhang W L, Zhang X D, et al. Sensors and Actuators B:Chemical, 2018, 265, 443.
55 Cao P F, Ma S Y, Xu X L, et al. Vacuum, 2020, 177, 109359.
56 Ma X H, Li H Y, Kweon S H, et al. ACS Applied Materials & Interfaces, 2019, 11(5), 5240.
57 Shingangea K, Swart H C, Mhlongo G H. Sensors and Actuators B:Che-mical, 2020, 308, 127670.
58 Zhu K M, Ma S Y, Pei S T, et al. Materials Letters, 2019, 246, 107.
59 Zhou T T, Zhang T, Zhang R, et al. ACS Applied Materials & Interfaces, 2017, 9(16), 14525.
60 Ma L, Ma S Y, Shen X F, et al. Sensors and Actuators B:Chemical, 2018, 255, 2546.
61 Balamurugan C, Lee D W. Sensors and Actuators B:Chemical, 2015, 221, 857.
62 Waghmare S D, Jadhav V V, Shaikh S F, et al. Sensors and Actuators A:Physical, 2018, 271, 37.
63 Dong G Z, Fan H Q, Tian H L, et al. RSC Advances, 2015, 5(38), 29618.
64 Song P, Qin H W, Zhang L, et al. Sensors and Actuators B:Chemical, 2005, 104(2), 312.
65 Liu H F, Guo Y Q, Xie R S, et al. Sensors and Actuators B:Chemical, 2017, 246, 164.
66 Liu X, Hu J F, Cheng B, et al. Sensors and Actuators B:Chemical, 2008, 134(2), 483.
67 Pei S T, Ma S Y, Xu X L, et al. Journal of Alloys and Compounds, 2021, 856, 158274.
68 Saoudi H, Benali A, Bejar M, et al. Journal of Alloys and Compounds, 2018, 731, 655.
69 Shingange K, Swart H, Mhlongo G H. ACS Omega, 2019, 4(21), 19018.
70 Li L, Qin H W, Zhang L, et al. RSC Advances, 2016, 6(65), 60967.
71 Zhang H, Qin H W, Zhang P P, et al. Sensors and Actuators B:Chemical, 2018, 260, 33.
72 Zhang H, Qin H W, Zhang P P, et al. ACS Applied Materials & Interfaces, 2018, 10(18), 15558.
73 Bai S L, Tong W J, Tian Y, et al. Journal of Materials Science, 2019, 54(3), 2025.
74 Rong Q, Zhang Y M, Hu J C, et al. Materials Research Bulletin, 2020, 132, 111006.
75 Waghmare S D, Raut S D, Ghule B G, et al. Journal of King Saud University Science, 2020, 32(7), 3125.
76 Zhang N, Ruan S P, Yin Y Y, et al. ACS Applied Nano Materials, 2018, 1(9), 4671.
77 Zhang H, Yi J X. Materials Letters, 2018, 216, 196.
78 Cheng P F, Lv L, Wang Y L, et al. Sensors and Actuators B:Chemical, DOI:10. 1016/j. snb. 2020. 129212.
79 Zhang D M, Chen M P, Zou H Y, et al. Nanotechnology, 2020, 31, 215601.
80 Rong Q, Zhang Y M, Li K J, et al. Materials Research Bulletin, 2019, 115, 55.
81 Li K, Chen M P, Rong Q, et al. Journal of Alloys and Compounds, 2018, 765, 193.
82 Li K, Wu Y Z, Chen M P, et al. Nanoscale Research Letters, 2019, 14, 1.
83 Ding J C, Li H Y, Cai Z X, et al. Sensors and Actuators B:Chemical, 2016, 222, 517.
84 Michel C R, Martínez-preciado A H, López-mena E R, et al. Sensors and Actuators B:Chemical, 2017, 246, 181.
85 Xing X X, Xiao X C, Wang L H, et al. Sensors and Actuators B:Chemical, 2017, 247, 797.
[1] 楚丙凯, 刘璐璐, 郝继功, 李伟, 曾华荣. BNT基铁电陶瓷的温度诱导高电致应变响应及其机理研究[J]. 材料导报, 2023, 37(7): 21100234-6.
[2] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[3] 才文文, 贺勇, 张敏, 史俊杰. AZrX3(A=Ba, Ca;X=S, Se,Te)钙钛矿结构及光电特性的第一性原理研究[J]. 材料导报, 2023, 37(2): 21070076-6.
[4] 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健, 朱华, 王艳香. SnO2基钙钛矿太阳能电池的发展[J]. 材料导报, 2022, 36(8): 20060037-12.
[5] 曾奕瑾, 宗朔通. 第一性原理在钙钛矿中的应用研究进展[J]. 材料导报, 2022, 36(8): 20080229-6.
[6] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[7] 明帅强, 王浙加, 吴鹿杰, 冯嘉恒, 高雅增, 卢维尔, 夏洋. 原子层沉积法制备SnO2薄膜及其对钙钛矿电池性能的影响[J]. 材料导报, 2022, 36(7): 20110236-6.
[8] 宋灵婷, 肖文波, 黄乐, 吴华明. 三维、二维卤化物钙钛矿材料性能及应用综述[J]. 材料导报, 2022, 36(5): 20070246-7.
[9] 宋牙牙, 黄艳斐, 郭伟玲, 邢志国, 王海斗, 吕振林, 张执南. 铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J]. 材料导报, 2022, 36(5): 21030094-10.
[10] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[11] 余剑峰, 罗凌虹, 程亮, 徐序, 王乐莹, 余永志, 夏昌奎. 钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(2): 20030066-11.
[12] 王超, 严铮洸, 肖家文. 应变工程对钙钛矿材料光电性质和稳定性的调制[J]. 材料导报, 2022, 36(17): 20070095-9.
[13] 杨潇, 曹成龙, 胡书, 葛嘉庆, 蒋青松, 盛传祥. 混合卤化物钙钛矿中的光致相分离效应[J]. 材料导报, 2022, 36(16): 20100115-15.
[14] 王琪, 李可, 吴益华, 朱志刚, 施惟恒. 静电纺丝制备高疏水性的CsPbBr3纳米晶聚甲基丙烯酸甲酯复合纤维薄膜[J]. 材料导报, 2022, 36(16): 21020035-5.
[15] 汪丰麟, 张为军, 毛海军, 白书欣. 温度稳定型BaTiO3基复合钙钛矿型介质材料研究进展[J]. 材料导报, 2022, 36(1): 20100126-12.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed