Preparation and Pb2+ Adsorption Properties of Modified Pectin-based Magnetic Microspheres with Different Sizes
LI Ya, MA Feiyue, ZHANG Ming, TU Xinghao, DU Liqing*
Key Laboratory of Tropical Fruit Biology of the Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, Guangdong, China
Abstract: The ethylenediamine modified pectin was used as matrix, compounded with sodium alginate and Fe3O4 to synthesize modified pectin-based magnetic microspheres with different sizes (750 μm, 540 μm, 400 μm and 100 μm) by microcapsule encapsulator. The samples were cha-racterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy analysis (SEM) and electron-microscopic analysis. The Pb2+adsorption properties of modified pectin-based magnetic microspheres with different sizes were then studied. The results showed that the adsorption equilibrium of Pb2+ on the modified pectin-based magnetic microspheres (100 μm) only need 1 h. Kinetics of Pb2+ adsorption process were better described by the pseudo-second-order kinetic equation, indicating that the adsorption rate is controlled by chemical adsorption. Langmuir model could better fit the experimental results, and the maximum adsorption capacity of the modified pectin-based magnetic microspheres (100 μm) was 256.41 mg/g. The desorption and regeneration experiment showed that the modified pectin-based magnetic microspheres (100 μm) exhibited great regeneration ability after nine desorption cycles.
李娅, 马飞跃, 张明, 涂行浩, 杜丽清. 不同尺寸改性果胶基磁性微球的制备及对Pb2+吸附性能的研究[J]. 材料导报, 2023, 37(9): 21050165-8.
LI Ya, MA Feiyue, ZHANG Ming, TU Xinghao, DU Liqing. Preparation and Pb2+ Adsorption Properties of Modified Pectin-based Magnetic Microspheres with Different Sizes. Materials Reports, 2023, 37(9): 21050165-8.
1 Wang J, Liu M, Duan C, et al. Carbohydrate Polymers, 2019, 206, 837. 2 Pal A, Majumder K, Sengupta S, et al. Carbohydrate Polymers, 2017, 177, 144. 3 Wang X D, Li Y, Dai T T, et al. Carbohydrate Polymers, 2021, 260(5), 117811. 4 Wang X D, Li Y, Dai T T, et al. Science and Technology of Food Industry, 2021, 42(15), 85(in Chinese). 王学栋, 李娅, 戴涛涛, 等. 食品工业科技, 2021, 42(15), 85. 5 Deng J Q, Liu Y G, Liu S B, et al. Journal of Colloid and Interface Science, 2017, 506, 355. 6 Onditi M, Adelodun A A, Changamu E O, et al. Journal of Applied Polymer Science, 2016, 133(38), 43913. 7 Wang X S, Miao H H, He W, et al. Journal of Chemical & Engineering Data, 2011, 56(3), 444. 8 Celus M, Kyomugasho C, Kermani Z J, et al. Food Hydrocolloids, 2017, 73, 101. 9 Hastuti B, Hadi S, Totiana F. IOP Conference Series Earth and Environmental Science, 2018, 171(1), 012039. 10 Firdaus F E, Redella A, Nursabila S. In:4th Engineering Science and Technology International Conference. Padang, 2018, pp. 04003. 11 Wang R S, Liang R H, Dai T T, et al. Trends in Food Science & Technology, 2019, 91, 319. 12 Li Z H, Chang X J, Zou X J, et al. Analytica Chimica Acta, 2009, 632(2), 272. 13 Facchi D P, Cazetta A L, Canesin E A, et al. Chemical Engineering Journal, 2017, 337, 595. 14 Sun J H, Chen Y, Yu H Q, et al. Journal of Colloid and Interface Science, 2018, 532, 474. 15 Yi X F, Yang M X, Mo L D, et al. Environmental Science and Pollution Research, 2018, 25(4), 3922. 16 Iordache M, Dodi G, Hritcu D, et al. Arabian Journal of Chemistry, 2018, 11(7), 1032. 17 Liu Y W, Liu L, Wang B, et al. Chemical Research and Application, 2017, 29(8), 1142(in Chinese). 刘义武, 刘岚, 王碧, 等. 化学研究与应用, 2017, 29(8), 1142. 18 Qin X L, Yang R, Liu X, et al. Food Science, 2017, 38(19), 7(in Chinese). 覃小丽, 杨溶, 刘雄, 等. 食品科学, 2017, 38(19), 7. 19 Liang R H, Li Y, Huang L, et al. Carbohydrate Polymers, 2020, 234, 115911. 20 Hong H J, Ryu J, Park I S, et al. Journal of Environmental Management, 2016, 165, 263. 21 Liang R H, Wang L H, Chen J, et al. Food Hydrocolloids, 2015, 50, 65. 22 Yang W, Pan W, Guo H, et al. Journal of Northwest Normal University(Natural Science), 2016, 52(3), 78(in Chinese). 杨武, 潘薇, 郭昊, 等. 西北师范大学学报(自然科学版), 2016, 52(3), 78. 23 Lu T, Xiang T, Huang X L, et al. Carbohydrate Polymers, 2015, 133, 587. 24 Jakóbik-Kolon A, Szybaj A, Mitko K, et al. Molecules, 2017, 22(12), 2212. 25 Li F, Xu Z, Wen X Y, et al. Water Science and Technology, 2019, 79(8), 1484. 26 Huang Y J, Wu H L, Shao T K, et al. Chemical Engineering Journal, 2018, 339, 322. 27 Yi X, Xu Z, Liu Y, et al. RSC Advances, 2017, 7(11), 6278. 28 Zhao F P, Repo E, Yin D L, et al. Journal of Colloid and Interface Science, 2013, 409(11), 174. 29 Wang H J, Zhou A L, Peng F, et al. Journal of Colloid and Interface Science, 2007, 316(2), 277.