Abstract: Two new [2Fe2S] compounds 1 and 2 containing the bridging ligand 6, 8-lipoic acid methyl ester (pdte) were synthesized, and their structures were characterized by IR, 1HNMR, 31PNMR(compound 2), elemental analysis and X-ray single crystal diffraction (compound 1), etc. A three-component photo-catalytic hydrogen production system was constructed, in which compounds 1 or 2 was used as the photo-catalyst, EY2-as the photo-sensitizer, TEA as the electron donor and proton source, respectively. The results showed that the maximum hydrogen production was 106.5 μmol (TON 13.3 vs.1 ) and 136.2 μmol (TON 17 vs.2), with corresponding hydrogen production rates 7 607 μmol·g-1·h-1and 6 595.6 μmol·g-1·h-1, respectively, under the optimal hydrogen production conditions of V(CH3CN)/V(H2O)=1/1, pH=11, and visible light (λ>420 nm) irradiation for 3.5 h. Probing into the mechanism of hydrogen production, it was shown that the deactivation of the system was mainly due to the photo-degradation of the photo-sensitizer EY2-and the catalyst in the photo-catalytic process. Photogenerated electrons can be transferred from 1*EY2- or EY3-· to the FeⅠFeⅠ center via two pathways to form the important intermediate FeⅠFe0 species in the present system. Furthermore, the important hydrogen-producing active intermediates HFeⅡFeⅠ species and (η2-H2) FeⅡ-FeⅠ species were formed by further protonation, finally releasing H2 and regenerating FeⅠFeⅠspecies. The result implicated that the title catalyst (especially 2) was a potential molecular catalyst for photo-catalytic hydrogen production.
通讯作者:
*郑会勤,河南财政金融学院环境学院副教授。2004年毕业于信阳师范学院,获得理学学士学位;2007年毕业于天津师范大学,获得理学硕士学位;2015年毕业于郑州大学,获得理学博士学位。主要从事光催化产氢材料及清洁能源的研究工作。在国内外期刊上发表学术论文30余篇,其中包括Journal of Power Sources、Solar Energy、International of Hydrogen Energy、Applied Organometalltic Chemistry等。zhenghuiqin2000@163.com
引用本文:
郑会勤, 樊耀亭. 基于两个[2Fe2S]化合物的光催化分解水产氢性能及可能的机理[J]. 材料导报, 2023, 37(9): 21050052-8.
ZHENG Huiqin, FAN Yaoting. Performance and Possible Mechanism of Photocatalytic Water Splitting for Hydrogen Production Based on Two [2Fe2S] Compounds. Materials Reports, 2023, 37(9): 21050052-8.
1 Krger J, Alberto J S, Savasci G, et al. Advanced Energy Materials, 2021, 11(6), 2170028 2 Wang X Z, Meng S L, Xiao H Y, et al. Angewandte Chemie International Edition, 2020, 59(42), 18400. 3 Pan J B, Shen S, Zhou W, et al. Acta Physico-Chimica Sinica, 2020, 36 (3), 40(in Chinese). 潘金波, 申升, 周威, 等. 物理化学学报, 2020, 36(3), 40. 4 Sun B, Qiu P, Liang Z, et al. Chemical Engineering Journal, 2021, 406(2014), 127177. 5 Liang Z, Meng X, Xue Y, et al. Journal of Colloid and Interface Science, 2021, 598, 172. 6 Liang Z, Xue Y, Wang X, et al. Chemical Engineering Journal, 2021, 421(1), 130016. 7 Wang M, Han K, Zhang S, et al. Coordination Chemistry Reviews, 2015, 287, 1. 8 Gao W, Song L C, Yin B S, et al. Organometallics, 2011, 30, 4097. 9 Gimbert-Suriñach C, Bhadbhade M, Colbran S B. Organometallics, 2012, 31, 3480. 10 Ridley F, Ghosh S, Hogarth G, et al. Journal of Electroanalytical Che-mistry, 2013, 703, 14. 11 Na Y, Wang M, Pan J, et al. Inorganic Chemistry, 2008, 47, 2805. 12 Song L C, Wang L X, Tang M Y, et al. Organometallics, 2009, 28, 3834. 13 Wang W G, Wang F, Wang H Y, et al. Dalton Transactions, 2012, 41, 2420. 14 Liu J H, Jiang W N. Dalton Transactions, 2012, 41, 9700. 15 Orain C, Quentel F, Gloaguen F. ChemSusChem, 2014, 7, 638. 16 Li C B, Li Z J, Yu S, et al. Energy & Environmental Science, 2013, 6(9), 2597. 17 Wang F, Liang W J, Jian J X, et al. Angewandte Chemie International Edition, 2013, 52(31), 8134. 18 Yu S, Wang F, Wang J J, et al. Pure and Applied Chemistry, 2013, 85(7), 1405. 19 Wen M, Li X B, Wu H L, et al. ChemPhotoChem, 2017, 1(6), 260. 20 Park E, Lee J, Kim J H, et al. Applied Biological Chemistry, 2023, 66, 21. 21 Lyon E J, Georgakaki I P, Reibenspies J H, et al. Angewandte Chemie International Edition, 1999, 38, 3178. 22 Lyon E J, Georgakaki I P, Reibenspies J H, et al. Journal of the American Chemical Society, 2001, 123, 3268. 23 Song L C, Liu X F, Ming J B, et al. Organometallics, 2010, 29, 610. 24 Thomas C M, Liu T, Hall M B, et al. Inorganic Chemistry, 2008, 47, 7009. 25 Wang Z, Liu J H, He C J, et al. Organometallic Chemistry, 2007, 692, 5501. 26 Song L C, Wang H T, Ge J H, et al. Organometallics, 2008, 27, 1409. 27 Du P, Eisenberg R. Energy & Environmental Science, 2012, 5, 6012. 28 Zhang X J, Jin Z L, Li Y X, et al. Journal of Physical Chemistry C, 2009, 113, 2630. 29 Souvik R, Thomas L G, Anne K J. Dalton Transactions, 2013, 42, 3843. 30 Li X, Wang M, Zhang S, et al. The Journal of Chemical Physics, 2008, 112, 8198. 31 Li C B, Li Z J, Yu S, et al. Energy & Environmental Science, 2013, 6, 2597. 32 Li X, Wang M, Chen L, et al. ChemSusChem, 2012, 5, 913. 33 Chong D S, Georgakaki I P, Mejia-Rodriguez R, et al. Dalton Transactions, 2003, 21, 4158. 34 Zheng H Q. Materials Reports B:Research Papers, 2020, 34(6), 12163(in Chinese). 郑会勤. 材料导报:研究篇, 2020, 34(6), 12163. 35 Song L C, Gao W, Luo X, et al. Organometallics, 2012, 31, 3324. 36 Han Z, McNamara W R, Eum M S, et al. Angewandte Chemie International Edition, 2012, 51, 1667. 37 Lazarides T, Cormick T M, Du P W, et al. Journal of the American Chemical Society, 2009, 131, 9192. 38 Na Y, Wang M, Jin K, et al. Organometallic Chemistry, 2006, 691, 5045. 39 Zhang P, Wang M, Na Y, et al. Dalton Transactions, 2010, 39, 1204.