Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21050052-8    https://doi.org/10.11896/cldb.21050052
  高分子与聚合物基复合材料 |
基于两个[2Fe2S]化合物的光催化分解水产氢性能及可能的机理
郑会勤1,*, 樊耀亭2
1 河南财政金融学院环境学院,郑州 450046
2 郑州大学化学学院,郑州 450001
Performance and Possible Mechanism of Photocatalytic Water Splitting for Hydrogen Production Based on Two [2Fe2S] Compounds
ZHENG Huiqin1,*, FAN Yaoting2
1 College of Environment, Henan Finance University, Zhengzhou 450046, China
2 College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 4857KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作合成了两个新的含有桥联配体6,8-硫辛酸甲酯 (pdte) 的[2Fe2S] 化合物1和2,并通过IR、1HNMR、31PNMR(化合物2)、元素分析、X射线单晶衍射(化合物1)等手段表征了其结构,构建了以目标化合物1或2为光催化剂、EY2-为光敏剂、TEA为电子给体和质子源的三组分光催化体系。结果表明:在pH=11的CH3CN/H2O(V(CH3CN)/V(H2O)=1/1)溶液中和经过3.5 h的可见光(λ>420 nm)照射的条件下,该体系的最大氢产量分别为106.5 μmol (TON 13.3 vs.1) 和136.2 μmol (TON 17 vs.2),对应的产氢速率分别为7 607 μmol·g-1·h-1和6 595.6 μmol·g-1·h-1。机理研究表明:体系失活主要归因于光催化过程中光敏剂EY2-和催化剂的光降解。在所构建的体系中,光生电子可经两种途径由1*EY2-或 EY3-· 转移到FeFe中心上,形成产氢的重要中间体FeFe0 物种,并通过进一步质子化产生HFeFe物种和(η2-H2)Fe-Fe物种,最终释放出H2分子并使FeFe物种再生。这说明目标催化剂(特别是化合物2)可作为潜在的光催化产氢分子催化剂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑会勤
樊耀亭
关键词:  [2Fe2S]化合物  光催化  产氢  电化学  荧光淬灭  机理    
Abstract: Two new [2Fe2S] compounds 1 and 2 containing the bridging ligand 6, 8-lipoic acid methyl ester (pdte) were synthesized, and their structures were characterized by IR, 1HNMR, 31PNMR(compound 2), elemental analysis and X-ray single crystal diffraction (compound 1), etc. A three-component photo-catalytic hydrogen production system was constructed, in which compounds 1 or 2 was used as the photo-catalyst, EY2-as the photo-sensitizer, TEA as the electron donor and proton source, respectively. The results showed that the maximum hydrogen production was 106.5 μmol (TON 13.3 vs.1 ) and 136.2 μmol (TON 17 vs.2), with corresponding hydrogen production rates 7 607 μmol·g-1·h-1and 6 595.6 μmol·g-1·h-1, respectively, under the optimal hydrogen production conditions of V(CH3CN)/V(H2O)=1/1, pH=11, and visible light (λ>420 nm) irradiation for 3.5 h. Probing into the mechanism of hydrogen production, it was shown that the deactivation of the system was mainly due to the photo-degradation of the photo-sensitizer EY2-and the catalyst in the photo-catalytic process. Photogenerated electrons can be transferred from 1*EY2- or EY3-· to the FeFe center via two pathways to form the important intermediate FeFe0 species in the present system. Furthermore, the important hydrogen-producing active intermediates HFeFe species and (η2-H2) Fe-Fe species were formed by further protonation, finally releasing H2 and regenerating FeFespecies. The result implicated that the title catalyst (especially 2) was a potential molecular catalyst for photo-catalytic hydrogen production.
Key words:  [2Fe2S] compound    photocatalysis    hydrogen production    electrochemistry    fluorescence quenching    mechanism
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  O641.4  
基金资助: 国家自然科学基金(21171147);河南省青年骨干教师项目(2020GGJS266);河南省高等学校重点科研项目(21B150001)
通讯作者:  *郑会勤,河南财政金融学院环境学院副教授。2004年毕业于信阳师范学院,获得理学学士学位;2007年毕业于天津师范大学,获得理学硕士学位;2015年毕业于郑州大学,获得理学博士学位。主要从事光催化产氢材料及清洁能源的研究工作。在国内外期刊上发表学术论文30余篇,其中包括Journal of Power Sources、Solar Energy、International of Hydrogen Energy、Applied Organometalltic Chemistry等。zhenghuiqin2000@163.com   
引用本文:    
郑会勤, 樊耀亭. 基于两个[2Fe2S]化合物的光催化分解水产氢性能及可能的机理[J]. 材料导报, 2023, 37(9): 21050052-8.
ZHENG Huiqin, FAN Yaoting. Performance and Possible Mechanism of Photocatalytic Water Splitting for Hydrogen Production Based on Two [2Fe2S] Compounds. Materials Reports, 2023, 37(9): 21050052-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050052  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21050052
1 Krger J, Alberto J S, Savasci G, et al. Advanced Energy Materials, 2021, 11(6), 2170028
2 Wang X Z, Meng S L, Xiao H Y, et al. Angewandte Chemie International Edition, 2020, 59(42), 18400.
3 Pan J B, Shen S, Zhou W, et al. Acta Physico-Chimica Sinica, 2020, 36 (3), 40(in Chinese).
潘金波, 申升, 周威, 等. 物理化学学报, 2020, 36(3), 40.
4 Sun B, Qiu P, Liang Z, et al. Chemical Engineering Journal, 2021, 406(2014), 127177.
5 Liang Z, Meng X, Xue Y, et al. Journal of Colloid and Interface Science, 2021, 598, 172.
6 Liang Z, Xue Y, Wang X, et al. Chemical Engineering Journal, 2021, 421(1), 130016.
7 Wang M, Han K, Zhang S, et al. Coordination Chemistry Reviews, 2015, 287, 1.
8 Gao W, Song L C, Yin B S, et al. Organometallics, 2011, 30, 4097.
9 Gimbert-Suriñach C, Bhadbhade M, Colbran S B. Organometallics, 2012, 31, 3480.
10 Ridley F, Ghosh S, Hogarth G, et al. Journal of Electroanalytical Che-mistry, 2013, 703, 14.
11 Na Y, Wang M, Pan J, et al. Inorganic Chemistry, 2008, 47, 2805.
12 Song L C, Wang L X, Tang M Y, et al. Organometallics, 2009, 28, 3834.
13 Wang W G, Wang F, Wang H Y, et al. Dalton Transactions, 2012, 41, 2420.
14 Liu J H, Jiang W N. Dalton Transactions, 2012, 41, 9700.
15 Orain C, Quentel F, Gloaguen F. ChemSusChem, 2014, 7, 638.
16 Li C B, Li Z J, Yu S, et al. Energy & Environmental Science, 2013, 6(9), 2597.
17 Wang F, Liang W J, Jian J X, et al. Angewandte Chemie International Edition, 2013, 52(31), 8134.
18 Yu S, Wang F, Wang J J, et al. Pure and Applied Chemistry, 2013, 85(7), 1405.
19 Wen M, Li X B, Wu H L, et al. ChemPhotoChem, 2017, 1(6), 260.
20 Park E, Lee J, Kim J H, et al. Applied Biological Chemistry, 2023, 66, 21.
21 Lyon E J, Georgakaki I P, Reibenspies J H, et al. Angewandte Chemie International Edition, 1999, 38, 3178.
22 Lyon E J, Georgakaki I P, Reibenspies J H, et al. Journal of the American Chemical Society, 2001, 123, 3268.
23 Song L C, Liu X F, Ming J B, et al. Organometallics, 2010, 29, 610.
24 Thomas C M, Liu T, Hall M B, et al. Inorganic Chemistry, 2008, 47, 7009.
25 Wang Z, Liu J H, He C J, et al. Organometallic Chemistry, 2007, 692, 5501.
26 Song L C, Wang H T, Ge J H, et al. Organometallics, 2008, 27, 1409.
27 Du P, Eisenberg R. Energy & Environmental Science, 2012, 5, 6012.
28 Zhang X J, Jin Z L, Li Y X, et al. Journal of Physical Chemistry C, 2009, 113, 2630.
29 Souvik R, Thomas L G, Anne K J. Dalton Transactions, 2013, 42, 3843.
30 Li X, Wang M, Zhang S, et al. The Journal of Chemical Physics, 2008, 112, 8198.
31 Li C B, Li Z J, Yu S, et al. Energy & Environmental Science, 2013, 6, 2597.
32 Li X, Wang M, Chen L, et al. ChemSusChem, 2012, 5, 913.
33 Chong D S, Georgakaki I P, Mejia-Rodriguez R, et al. Dalton Transactions, 2003, 21, 4158.
34 Zheng H Q. Materials Reports B:Research Papers, 2020, 34(6), 12163(in Chinese).
郑会勤. 材料导报:研究篇, 2020, 34(6), 12163.
35 Song L C, Gao W, Luo X, et al. Organometallics, 2012, 31, 3324.
36 Han Z, McNamara W R, Eum M S, et al. Angewandte Chemie International Edition, 2012, 51, 1667.
37 Lazarides T, Cormick T M, Du P W, et al. Journal of the American Chemical Society, 2009, 131, 9192.
38 Na Y, Wang M, Jin K, et al. Organometallic Chemistry, 2006, 691, 5045.
39 Zhang P, Wang M, Na Y, et al. Dalton Transactions, 2010, 39, 1204.
[1] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[2] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[3] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[4] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[5] 王鹏飞, 梁明, 贾佳林, 马小波, 徐晓燕. 脉冲磁体用高强高导Cu-Nb复合线材的研究进展[J]. 材料导报, 2023, 37(8): 21120237-8.
[6] 黄洪涛, 刘阳,王旺. 反应堆结构部件表面阻氢/氘/氚涂层的研究现状及展望[J]. 材料导报, 2023, 37(7): 21050015-7.
[7] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[8] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[9] 辜敏, 吴亚珍. 阴极直接制备铜氧化物-SiO2复合薄膜及其电化学形成机理[J]. 材料导报, 2023, 37(5): 21030296-6.
[10] 饶强海, 胡光煊, 张春媚, 杨鸿斌, 胡芳馨, 郭春显. 碳基材料构建电化学传感器实现苯二酚异构体的超敏精准检测:综述[J]. 材料导报, 2023, 37(5): 21080175-17.
[11] 赵艳艳, 范敬煜, 魏景, 施欢贤. 碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.
[12] 李建东, 张延杰, 王旭, 蒋代军, 王兴为. 新型固化剂加固膨胀土研究现状及展望[J]. 材料导报, 2023, 37(5): 21030148-11.
[13] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[14] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[15] 张理元, 阳金菊, 尤佳. 以PVP为软模板构建的层状介孔TiO2及其光催化性能[J]. 材料导报, 2023, 37(4): 21080004-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed