Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21050030-8    https://doi.org/10.11896/cldb.21050030
  高分子与聚合物基复合材料 |
拉伸对PA6/PET/AX8900薄膜直线易撕裂性能的影响
董煜, 刘跃军*, 崔玲娜, 刘小超, 范淑红, 李霞
湖南工业大学先进包装材料与技术湖南省重点实验室,湖南 株洲 412007
Effect of Stretching on Linear Tear Property of PA6/PET/AX8900 Film
DONG Yu, LIU Yuejun*, CUI Lingna, LIU Xiaochao, FAN Shuhong, LI Xia
Hunan Provincial Key Laboratory of Advanced Packaging Materials and Technology of Hunan University of Technology, Zhuzhou 412007, Hunan, China
下载:  全 文 ( PDF ) ( 5029KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以PA6为基体,引入PET相,制备五种不同配比的PA6/PET/AX8900复合材料薄膜和双向拉伸薄膜,采用SEM、DMA、DSC等研究了双向拉伸前后PA6/PET/AX8900复合材料薄膜的微观形貌、热力学和结晶行为,探讨了复合材料薄膜的直线撕裂性能、力学性能、阻隔性能和光学性能,同时研究相容剂EAG(AX8900)对PA6与PET相容性的影响。研究结果表明,添加3%AX8900对PA6/PET复合材料薄膜有明显的增容效果,PET在PA6基体中分散良好;当PET添加量从0%增加到35%时,PA6/PET/AX8900复合材料薄膜熔点降低,与此同时,由于PET中刚性苯环的存在,结晶温度从187.01 ℃下降到183.47 ℃。力学性能测试显示,当PET添加量为25%时,PA6/PET/AX8900薄膜拉伸强度相较于纯PA6膜提升25%,断裂伸长率基本不变。当拉伸比为3×1时,PET添加量为25%的PA6/PET/AX8900双向拉伸薄膜的拉伸强度较纯PA6提高了88%。直线易撕裂测试结果表明,当PET添加量从0%增加到25%时,复合材料薄膜的撕裂偏差从100%降低到46%。PET添加量为25%的PA6/PET/AX8900复合材料薄膜经过双向拉伸后,撕裂偏差相较于未拉伸前的PA6/PET/AX8900复合材料薄膜显著降低,当拉伸比为3×1时,PA6/PET/AX8900共混膜的撕裂偏差为3.2%;此外,当PET的添加量为25%时,PA6/PET/AX8900复合材料薄膜的阻隔性能和雾度都得到改善。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董煜
刘跃军
崔玲娜
刘小超
范淑红
李霞
关键词:  PA6/PET/AX8900薄膜  相容性  双向拉伸  晶体结构  直线易撕裂性能    
Abstract: Using PA6 as the matrix and introducing the PET phase to prepare five different blending ratios of PA6/PET/AX8900 blended films and biaxially oriented films. Morphology, thermodynamics and crystallization behavior of the PA6/PET/AX8900 blended films before and after biaxial stretching were studied by SEM, DMA, DSC, etc. The linear tearing performance, mechanical properties, barrier properties and optical properties of the blend film were discussed. At the same time, the influence of the compatibilizer EAG (AX8900) on the compatibility of PA6 and PET was studied. The research results show that the addition of 3wt% AX8900 has a significant compatibilizing effect on the PA6/PET blend film, and the PET is well dispersed in the PA6 matrix;when the amount of PET added was increased from 0wt% to 35wt%, the melting point of the PA6/PET/AX8900 blend film decreased. At the same time, due to the presence of rigid benzene rings in PET, the crystallization temperature dropped from 187.01 ℃ to 183.47 ℃. The mechanical performance test showed that when the amount of PET added was 25wt%, the tensile strength of the PA6/PET/AX8900 film was increased by 25% compared with the pure PA6 film, and the elongation at break was basically unchanged. When the stretch ratio was 3×1, the tensile strength of the PA6/PET/AX8900 biaxially oriented film with a PET addition of 25wt% was 88% higher than that of pure PA6. The results of the straight-line tear test showed that when the amount of PET added was increased from 0wt% to 25wt%, the tear deviation of the blend film decreased from 100% to 46%. After the PA6/PET/AX8900 blend film with a PET content of 25wt% was biaxially stretched, the tear deviation was significantly lower than that of the unstretched PA6/PET/AX8900 blend film. When the stretch ratio was 3×1, the PA6/PET/AX8900 blend film had a tear deviation of 3.2%. In addition, when the added amount of PET was 25wt%, the barrier properties and haze of the PA6/PET/AX8900 blend film were improved.
Key words:  PA6/PET/AX8900 film    compatibility    biaxial stretching    crystal structure    linear tear property
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TB34  
基金资助: 国家自然科学基金(11872179);湖南省自然科学基金(2018JJ4072);湖南省教育厅科学研究项目(18K079;19A138)
通讯作者:  *刘跃军,教授、博士研究生导师,华南理工大学博士,中南大学博士后,湖南工业大学包装与材料工程学院院长。主要从事高分子材料与工程、包装新材料与技术等领域的科研和教学工作。已承担国家科技支撑计划、国家自然科学基金、湖南省杰出青年基金等国家级和省部级项目10余项,先后荣获中国流变学青年奖、中国包装联合会科技进步奖等荣誉。在国内外知名学术刊物上发表论文100余篇,授权专利24项。yjliu_2005@126.com   
作者简介:  董煜,2014—2018年,本科就读于湖南工业大学包装与材料工程学院,专业为高分子材料与工程,2021年,湖南工业大学包装与材料工程学院材料学硕士毕业。主要研究方向为尼龙薄膜的拉伸。
引用本文:    
董煜, 刘跃军, 崔玲娜, 刘小超, 范淑红, 李霞. 拉伸对PA6/PET/AX8900薄膜直线易撕裂性能的影响[J]. 材料导报, 2023, 37(9): 21050030-8.
DONG Yu, LIU Yuejun, CUI Lingna, LIU Xiaochao, FAN Shuhong, LI Xia. Effect of Stretching on Linear Tear Property of PA6/PET/AX8900 Film. Materials Reports, 2023, 37(9): 21050030-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050030  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21050030
1 Fereydoon M, Tabatabaei S H, Ajji A. Macromolecules, 2014, 47(7), 2384.
2 Pepin J, Gaucher V, Lefebvre J M, et al. Polymer, 2016, 101, 217.
3 Tabatabaei S H, Carreau P J, Ajji A. Polymer, 2009, 50(16), 3981.
4 Lin Y, Dias P, Chen H, et al. Polymer Engineering & Science, 2008, 48(4), 642.
5 Rhee S, White J L. Polymer, 2002, 43(22), 5903.
6 Maio L D, Scarfato P, Incarnato L, et al. Macromolecular Symposia, 2015, 180(1), 1.
7 Bell A F, Walton K L, Tapsell L C. Appetite, 2016, 98, 125.
8 Lei F, Du Q, Li T, et al. Polymer Engineering & Science, 2013, 53(9), 1996.
9 Hedicke K, Wittich H, Mehler C, et al. Composites Science & Technology, 2006, 66(3-4), 571.
10 Takashige M, Kanai T, Yamada T. International Polymer Processing Journal of the Polymer Processing Society, 2004, 19(2), 147.
11 Takashige M, Kanai T. International Polymer Processing Journal of the Polymer Processing Society, 2005, 20(1), 100
12 Lin F, Hao X, Liu Y, et al. Journal of Applied Polymer Science, 2020, 137(37), e49108.
13 Zhang X Y, Xie J J, Jing B. China Plastics, 2004, 18(5), 19 (in Chinese).
张新颖, 谢建军, 敬波. 中国塑料, 2004, 18(5), 19
14 Xu Y F. Radiation chemistry study on PET surface functionalization and blending modification. Ph. D. Thesis, University of Science and Technology of China, China, 2013(in Chinese).
徐永飞. PET表面功能化和共混改性的辐射化学研究. 博士学位论文, 中国科学技术大学, 2013.
15 Huang Y Q, Liu Y X, Zhao C H, et al. Journal of Applied Polymer Science, 1998, 69(8), 1505.
16 Shi Y K, Xu J L, Wang S L, et al. Materials Science Forum, 2020, 993, 709.
17 Utracki L A, Dumoulin M M, Toma P. Polymer Engineering & Science, 1986, 26(1), 34.
18 Yan Y, Huang Y H, Wang Y, et al. Polymer, 2019, 180, 121679.
19 Li S, Wang W, Yu L, et al. Journal of Applied Polymer Science, 2018, 135(26), 135.
20 Standardization Administration of the People's Republic of China. Plastics determination of tensile properties Part 2:Test conditions for molded and extruded plastics:GB/T1040. 2-2006, China Standard Press, China, 2006(in Chinese).
中国国家标准化管理委员会. 塑料拉伸性能的测定第2部分:模塑和挤塑塑料的试验条件:GB/T1040. 2-2006, 中国标准出版社, 2006.
21 State Administration for Market Regulation. Determination of light transmittance and haze of transparent plastics:GB/T2410-2008, China, 2008(in Chinese).
国家市场监督管理总局. 透明塑料透光率和雾度的测定:GB/T2410-2008, 2008.
22 Kanai T, Campbell G. Munich:Carl Hanser Verlag, DOI:10. 3139/9781569905364. fm.
23 Fornes T, Paul D R. Polymer, 2003, 44(14), 3945.
24 Miri V, Elkoun S, Peurton F, et al. Macromolecules, 2008, 41(23), 9234.
25 Liu X, Wu Q. Polymer, 2002, 43(6), 1933.
26 Liu Y, Cui L, Guan F, et al. Macromolecules, 2007, 40(17), 6283.
27 Murthy N S, Aharoni S M, Szollosi A B. Journal of Polymer Science Polymer Physics Edition, 1985, 23(12), 2549.
28 Cavallo D, Gardella L, Alfonso G C, et al. Colloid and Polymer Science, 2011, 289(9), 1073.
29 Mileva D, Androsch R, Zhuaavlev E, et al. Polymer, 2012, 53(18), 3994.
30 Ziabicki A. Kolloid-Zeitschrift, 1959, 167(2), 132.
31 Yan Y, Gooneie A, Ye H, et al. Macromolecular Materials and Engineering, DOI:10. 1002/mame. 201800214.
32 Maruhashi Y, Iida S. Polymer Engineering & Science, 2001, 41(11), 198.
33 Kinoshita Y. Die Makromolekulare Chemie:Macromolecular Chemistry and Physics, 1959, 33(1), 1.
34 Chen X Y. Study on the extinction mechanism of polyolefin matting film. Master's Thesis, Sichuan University, China, 2006(in Chinese).
陈晓勇. 聚烯烃消光膜消光机理研究. 硕士学位论文, 四川大学, 2006.
[1] 魏亚洲, 刘一凡, 李翔龙. 电火花放电法合成Cu0.81Ni0.19合金的性能研究[J]. 材料导报, 2023, 37(9): 21080057-6.
[2] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[3] 晏彩先, 许明明, 陈祝安, 王姿奥, 刘伟平, 常桥稳. 新型铱配合物[Ir(pmppy)2(Br2bpy)]PF6的合成、晶体结构及光物理性能测试[J]. 材料导报, 2022, 36(Z1): 21090264-5.
[4] 王鼎, 周艳文, 张开策, 粟志伟, 杜峰, 武俊生, 郭诚. 离子氮化中氮在典型钢中的扩散行为研究[J]. 材料导报, 2022, 36(Z1): 22010109-6.
[5] 杨卫, 徐呈祥, 陈则胜, 聂正稳, 董兵海. 基于生物聚合物伤口敷料的研究及应用进展[J]. 材料导报, 2022, 36(Z1): 21100217-5.
[6] 李佩悦, 马立云, 谢恩俊, 任子杰, 周新军, 高惠民, 吴建新. 六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性[J]. 材料导报, 2022, 36(6): 20090231-12.
[7] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[8] 徐建林, 王涛, 康成虎, 杨文龙, 牛磊. 阻燃剂研究与应用进展及问题思考[J]. 材料导报, 2022, 36(10): 20110227-9.
[9] 余洁, 赵海岚, 张岚. 角膜接触镜的聚羧酸甜菜碱表面改性研究[J]. 材料导报, 2021, 35(z2): 488-491.
[10] 吴雪莲, 杨建, 屈阳, 王秀敏. 形状记忆聚合物智能材料在生物医学领域的应用[J]. 材料导报, 2021, 35(z2): 492-500.
[11] 韩美旭, 蔡伦, 王小泽, 藏洁, 孙梦宇, 杨涵凝, 秦连杰. 白光LED用氮化物红色荧光粉的研究进展[J]. 材料导报, 2021, 35(Z1): 51-55.
[12] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[13] 任书芳, 冯润妍, 程寿年, 曾俊菱, 宫雪, 王庆涛. 二维材料MXenes在传感领域的应用研究进展[J]. 材料导报, 2021, 35(5): 5075-5088.
[14] 李华芳, 郑宜星, 王鲁宁. 可降解医用金属功能化表面改性研究进展[J]. 材料导报, 2021, 35(1): 1168-1176.
[15] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed