Please wait a minute...
材料导报  2020, Vol. 34 Issue (18): 18104-18108    https://doi.org/10.11896/cldb.19060132
  金属与金属基复合材料 |
Mg-11Gd-3Y-1.1Zn-0.5Zr的高温热压缩行为及热加工图
王颂博1, 李全安1,2, 陈晓亚1,3, 朱利敏1, 张帅1, 关海昆1
1 河南科技大学材料科学与工程学院,洛阳 471023
2 有色金属共性技术河南省协同创新中心,洛阳 471023
3 西安理工大学材料科学与工程学院,西安 740048
High Temperature Thermal Compression Behavior and Processing Map of Mg-11Gd-3Y-1.1Zn-0.5Zr
WANG Songbo1, LI Quan'an1,2, CHEN Xiaoya1,3, ZHU Limin1, ZHANG Shuai1, GUAN Haikun1
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
2 Collaborative Innovation Center of Nonferrous Metals, Henan Province, Luoyang 471023, China
3 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 740048, China
下载:  全 文 ( PDF ) ( 4308KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用Gleeble-1500热模拟试验机对均匀化后的Mg-11Gd-3Y-1.1Zn-0.5Zr合金进行了温度为350~500℃、应变速率为0.002~1 s-1的热压缩实验,构建了合金高温塑性变形的本构方程,建立并分析了合金的热加工图。结果表明:Mg-11Gd-3Y-1.1Zn-0.5Zr合金热变形发生了动态回复和动态再结晶,合金的流变应力随温度的升高和应变速率的降低而升高,合金热变形激活能Q=286.134 kJ/mol;合金在T=380~500℃、ε·=0.002~0.05 s-1区域能量耗散率大于30%且不发生失稳,适合热加工。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王颂博
李全安
陈晓亚
朱利敏
张帅
关海昆
关键词:  Mg-11Gd-3Y-1.1Zn-0.5Zr合金  热压缩  本构方程  加工图    
Abstract: The homogenized Mg-11Gd-3Y-1.1Zn-0.5Zr alloy was subjected to the hot compression experiment with the temperature of 350—500℃ and the strain rate of 0.002—1 s-1 using a Gleeble-1500 thermal simulator. The constitutive equation of high temperature plastic deformation was established and analyzed. The results showed that the dynamic recover and dynamic recrystallization of Mg-11Gd-3Y-1.1Zn-0.5Zr alloy occurred, and the flow stress of the alloy increased with the increase of temperature and strain rate. The thermal deformation activation energy of the alloy was about 286.134 kJ/mol; the regional energy dissipation rate of the alloy at T=380—500℃, ε·=0.002—0.05 s-1 was greater than 30% and no instability, which indicates that the alloy is suitable for thermal processing.
Key words:  Mg-11Gd-3Y-1.1Zn-0.5Zr alloy    hot compression    constitutive equation    processing map
                    发布日期:  2020-09-12
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(51571084;51171059)
通讯作者:  q-ali@163.com   
作者简介:  王颂博,河南科技大学在读工程硕士研究生,专业研究方向为先进镁合金,主要从事高性能镁合金的设计与开发。
李全安,河南科技大学,教授。目前主要从事稀土功能材料、稀土镁合金、稀土铝合金、稀土表面改性等研究。主持国家自然科学基金、河南省杰出人才基金、河南省杰出青年基金等项目10余项。发表研究论文300余篇,获国家发明专利授权20余项。
引用本文:    
王颂博, 李全安, 陈晓亚, 朱利敏, 张帅, 关海昆. Mg-11Gd-3Y-1.1Zn-0.5Zr的高温热压缩行为及热加工图[J]. 材料导报, 2020, 34(18): 18104-18108.
WANG Songbo, LI Quan'an, CHEN Xiaoya, ZHU Limin, ZHANG Shuai, GUAN Haikun. High Temperature Thermal Compression Behavior and Processing Map of Mg-11Gd-3Y-1.1Zn-0.5Zr. Materials Reports, 2020, 34(18): 18104-18108.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060132  或          http://www.mater-rep.com/CN/Y2020/V34/I18/18104
1 Chen Z H. Magnesium alloy, Chemical Industry Press, China, 2004(in Chinese).
陈振华. 镁合金, 化学工业出版社, 2004.
2 Wang X Q, Li Q A, Zhang X Y, et al. Hot Working Technology, 2007, 36(14), 66(in Chinese).
王小强, 李全安, 张兴渊, 等. 热加工工艺, 2007, 36(14),66.
3 Wan Y C, Xiao H C, Jiang S N, et al. Materials Science & Engineering A, 2014, 617, 243.
4 Zhong L X, Yang M B, Yuan S, et al. Journal of Chongqing University of Technology(Natural Science), 2019, 33(8),90(in Chinese).
钟罗喜, 杨明波, 袁淑, 等. 重庆理工大学学报(自然科学), 2019, 33(8),90.
5 Jin S, Zhang D, Lu X P, et al. Journal of Materials Science & Technology, 2020, 47,190.
6 Ding W J, Wu Y J, Peng L M, et al. Materials China, 2010, 29(8),37(in Chinese).
丁文江, 吴玉娟, 彭立明, 等. 中国材料进展, 2010, 29(8),37.
7 Jafari Nodooshan H R, Wu G H, Liu W C, et al. Materials Science & Engineering A, 2016, 651, 840.
8 Wu W X, Jin L, Dong J, et al. The Chinese Journal of Nonferrous Metals, 2011, 21(11), 2709(in Chinese).
吴文祥, 靳丽, 董杰, 等. 中国有色金属学报, 2011, 21(11),2709.
9 Zeng X Q. Rare Earth Information, 2016(2),26(in Chinese).
曾小勤. 稀土信息, 2016(2), 26.
10 Chen X Y, Li Q A, Chen J, et al. Transactions of Materials and Heat Treatment, 2017, 38(11),21(in Chinese).
陈晓亚, 李全安, 陈君, 等. 材料热处理学报, 2017, 38(11), 21.
11 Meng L G. Formation mechanism and microstructure and properties of long-term structure of Mg-Gd-Y-Zn-Zr alloy.Ph.D. Thesis,Dalian University of Technology, 2014(in Chinese).
孟令刚. Mg-Gd-Y-Zn-Zr合金长周期结构形成机制与组织性能研究.博士学位论文,大连理工大学, 2014.
12 Pu Z J, Chen D J, Zhang K, et al. Materials Reports A:Review Papers, 2017, 31(4),79(in Chinese).
蒲治军, 陈东杰, 张奎, 等. 材料导报:综述篇, 2017, 31(4),79.
13 Xia X M, Xie R, Xue K M, et al. Journal of Plasticity Engineering, 2017, 24(3),78(in Chinese).
夏显明, 谢瑞, 薛克敏, 等. 塑性工程学报, 2017, 24(3),78.
14 Kwak T Y, Lim H K, Kim W J. Journal of Alloys and Compounds, 2015, 63,417.
15 Cai Y, Sun C Y, Wan L, et al. Acta Metallurgica Sinica, 2016, 52(9),1123(in Chinese).
蔡贇, 孙朝阳, 万李, 等. 金属学报, 2016, 52(9), 1123.
16 Yao H, Wen J B, Xiong Y, et al. Rare Metal Materials and Engineering, 2019, 48(6),1982(in Chinese).
姚怀, 文九巴, 熊毅, 等. 稀有金属材料与工程, 2019, 48(6),1982.
17 Poirier J P. High temperature plastic deformation of crystals. Guan D L, translation. Dalian University of Technology Press, China,1989(in Chinese).
Poirier J P. 晶体的高温塑性变形. 关德林, 译. 大连理工大学出版社, 1989.
18 Zener C, Hollomon J. Journal of Applied Physics, 1944, 15, 22.
19 Peng J, Tong X S, Shang S L, et al. Rare Metal Materials and Enginee-ring, 2013, 42(8),1627(in Chinese).
彭建, 童小山, 尚守亮, 等. 稀有金属材料与工程, 2013, 42(8),1627.
20 Prasad Y V R K, Sasidhara S. Hot working guide: A compendium of processing maps. ASM Intertentional, USA,1997.
21 Yin Z R, Lu L W, Liu X Y, et al. The Chinese Journal of Nonferrous Metals, 2018, 28(8),1523(in Chinese).
尹振入, 卢立伟, 刘晓烨, 等. 中国有色金属学报, 2018, 28(8),1523.
22 Zhu L M, Li Q A. Materials Reports A:Research Papers, 2018, 32(2),593(in Chinese).
朱利敏, 李全安. 材料导报:研究篇, 2018, 32(2),593.
[1] 任军帅, 李欣琳, 肖松涛, 周立鹏, 舒滢, 张英明. 新型Ti-Al-Zr-Nb-Mo-Si钛合金热变形行为及基于BP神经网络模型的本构关系研究[J]. 材料导报, 2020, 34(Z1): 283-288.
[2] 仇鹏, 王家毅, 段晓鸽, 蔺宏涛, 陈康, 江海涛. AA7021铝合金热变形行为及微观组织演变机理的研究[J]. 材料导报, 2020, 34(8): 8106-8112.
[3] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[4] 谢誉璐, 黄光胜, 刘帅帅, 张军磊, 潘复生. 微量Ca元素对AZ31镁合金热变形行为的影响[J]. 材料导报, 2020, 34(12): 12070-12075.
[5] 胡余生, 冯迪, 周建党, 朱田, 张豪, 张捷, 范曦, 宋飞刀. 喷射成形AlSi25Cu4Mg耐磨合金的本构方程及热加工图[J]. 材料导报, 2020, 34(10): 10120-10125.
[6] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[7] 朱利敏, 李全安, 陈晓亚, 张清, 王颂博, 张帅. Mg-8Gd-0.5Zr合金热压缩过程中动态再结晶行为[J]. 材料导报, 2019, 33(24): 4117-4121.
[8] 夏雨, 王快社, 胡平, 胡卜亮, 李世磊, 陈文静, 周宇航, 冯鹏发. 纯钼金属高温塑性变形行为研究进展[J]. 材料导报, 2019, 33(19): 3277-3289.
[9] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[10] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[11] 陈龙, 司家勇, 刘松浩, 廖凯. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报, 2019, 33(12): 2047-2054.
[12] 薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
[13] 刘贤翠, 潘冶, 陆韬, 唐智骄, 何为桥. 3003铝合金蠕变行为与本构方程[J]. 材料导报, 2018, 32(6): 1015-1019.
[14] 朱利敏, 李全安. Mg-8.08Gd-2.41Sm-0.3Zr合金热压缩变形及热加工图[J]. 《材料导报》期刊社, 2018, 32(4): 593-597.
[15] 袁战伟, 李付国, 王春伟, 王瑜, 郭亚杰, 周亮. 基于Murty准则的SiCp/Al复合材料热加工图研究[J]. 《材料导报》期刊社, 2018, 32(4): 657-661.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed