Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 22110207-10    https://doi.org/10.11896/cldb.22110207
  无机非金属及其复合材料 |
立方砷化硼晶体生长、性能及应用研究进展
王媛媛1, 张璐1, 程洗洗1, 钱麒2, 徐欢3, 徐华4, 杨雪舟5, 杨波波1,4,*, 邹军2,3,5,*
1 上海应用技术大学理学院,上海 201418
2 惠创科技(台州)有限公司,浙江 台州 318000
3 浙江安贝新材料股份有限公司,浙江 湖州 313000
4 广东皇智照明科技有限公司,广东 中山 528400
5 宁波朗格照明电器有限公司,浙江 宁波 315301
Research Progress in Crystal Growth, Physical Properties and Application of Cubic Boron Arsenide
WANG Yuanyuan1, ZHANG Lu1, CHENG Xixi1, QIAN Qi2, XU Huan3, XU Hua4, YANG Xuezhou5, YANG Bobo1,4,*, ZOU Jun2,3,5,*
1 School of Science, Shanghai Institute of Technology, Shanghai 201418, China
2 Silanex Technology (Taizhou) Co., Ltd., Taizhou 318000, Zhejiang, China
3 Zhejiang Anbei New Material Co., Ltd., Huzhou 313000, Zhejiang, China
4 Guang Dong KG Lighting Technology Co., Ltd., Zhongshan 528400, Guangdong, China
5 Ningbo Longer Lighting Co., Ltd., Ningbo 315301, Zhejiang, China
下载:  全 文 ( PDF ) ( 19905KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 立方砷化硼(c-BAs)是一种间接带隙、闪锌矿结构的新型Ⅲ-Ⅴ族化合物半导体材料。第一性原理计算预测c-BAs具有超高的热导率,从而激发了对其晶体合成和性能研究的热潮。尤其是近年来在晶体生长方面取得的突破性进展,通过化学气相传输(CVT)法制备了毫米尺寸的高质量c-BAs单晶,室温下其热导率高达1 300 W·m-1·K-1,吸引了人们极大的关注,也进一步鼓舞了人们对其理论和实验方面的研究。本综述将归纳总结近年来关于c-BAs理论计算、晶体生长、物理性能以及材料应用方面的研究进展,阐述了该晶体制备方面所面临的挑战,并对其发展前景进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王媛媛
张璐
程洗洗
钱麒
徐欢
徐华
杨雪舟
杨波波
邹军
关键词:  砷化硼  晶体生长  化学气相传输  热导率  热管理材料    
Abstract: Cubic boron arsenide(c-BAs) is a new type of group Ⅲ-Ⅴ compound semiconductor material with indirect band gap and zinc blend structure. First-principles calculations predict that c-BAs have extremely high thermal conductivity, which has stimulated a great deal of research on crystal synthesis and properties. In particular, recent breakthroughs in crystal growth, such as the preparation of millimeter-size high quality c-BAs single crystals by chemical vapor transport (CVT) method, with thermal conductivity up to 1 300 W·m-1·K-1 at room temperature, have attracted great attention and further encouraged the theoretical and experimental research. In this review, we summarize the recent research progress in the theoretical calculation, crystal growth, physical properties and material application of c-BAs, describe the challenges in the preparation of the crystal, and prospect its development prospects.
Key words:  c-BAs    crystal growth    chemical vapor transport    thermal conductivity    thermal management materials
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TN304  
基金资助: 国家重点研发计划(2021YFB3501700);上海市2022、2023年度“科技创新行动计划”农业科技领域项目(22N21900400;23N21900100);国家自然科学基金委员会,青年科学基金项目(12104311);上海应用技术大学中青年教师科技人才发展基金(ZQ2022-3);上海市晨光计划(22CGA74)
通讯作者:  *杨波波,博士,讲师,研究方向为光电材料与器件,累计发表SCI论文60余篇,申请专利30多项。boboyang@sit.edu.cn;
邹军,教授,研究方向为半导体封测及工业自动化,发表SCI论文100多篇,授权发明专利40项、实用新型专利69项,主编半导体材料、封测和系统专著6本。zoujun@sit.edu.cn   
作者简介:  王媛媛,现为上海应用技术大学理学院硕士研究生。主要研究方向为锡基二维钙钛矿材料。
引用本文:    
王媛媛, 张璐, 程洗洗, 钱麒, 徐欢, 徐华, 杨雪舟, 杨波波, 邹军. 立方砷化硼晶体生长、性能及应用研究进展[J]. 材料导报, 2024, 38(17): 22110207-10.
WANG Yuanyuan, ZHANG Lu, CHENG Xixi, QIAN Qi, XU Huan, XU Hua, YANG Xuezhou, YANG Bobo, ZOU Jun. Research Progress in Crystal Growth, Physical Properties and Application of Cubic Boron Arsenide. Materials Reports, 2024, 38(17): 22110207-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110207  或          http://www.mater-rep.com/CN/Y2024/V38/I17/22110207
1 Waldrop M M. Nature News, 2016, 530(7589), 144.
2 Garimella S V, Fleischer A S, Murthy J Y, et al. IEEE Transactions on Components and Packaging Technologies. 2008, 31(4), 801.
3 Lindsay L, Broido D A, Reinecke T L. Physical Review Letters, 2013, 111(2), 025901.
4 Lv B, Lan Y, Wang X, et al. Applied Physics Letters, 2015, 106(7), 074105.
5 Xing J, Chen X, Zhou Y, et al. Applied Physics Letters, 2018, 112(26), 261901.
6 Zheng Q, Polanco C A, Du M H, et al. Physical Review Letters, 2018, 121(10), 105901.
7 Surh M P, Louie S G, Cohen M L. Physical Review B, 1991, 43(11), 9126.
8 Wentzcovitch R M, Cohen M L, Lam P K. Physical Review B, 1987, 36(11), 6058.
9 Meradji H, Drablia S, Ghemid S, et al. Physical Status Solidi (b), 2004, 241(13), 2881.
10 Ustundag M, Aslan M, Yalcin B G. Computational Materials Science, 2014, 81, 471.
11 Dramicanin M. Luminescence thermometry: methods, materials, and applications, Woodhead Publishing, UK, 2018, pp. 13.
12 Lax M, Hu P, Narayanamurti V. Physical Review B, 1981, 23(6), 3095.
13 Kang J S, Li M, Wu H, et al. Science, 2018, 361(6402), 575.
14 Tian F, Song B, Chen X, et al. Science, 2018, 361(6402), 582.
15 Ma H, Li C, Tang S, et al. Physical Review B, 2016, 94(22), 220303.
16 Feng T, Ruan X. Physical Review B, 2018, 97(4), 045202.
17 Blakemore J S. Journal of Applied Physics, 1982, 53(10), 123.
18 Slack G A. Journal of Physics and Chemistry of Solids, 1973, 34(2), 321.
19 Gamage G A, Sun H, Ziyaee H, et al. Applied Physics Letters, 2019, 115(9). 20. Chu T L, Hyslop A E. Journal of Applied Physics, 1972, 43(2), 276.
20 Li S, Zheng Q, Lv Y, et al. Science, 2018, 361(6402), 579.
21 Liu Z, Deng F, Zhou Y, et al. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4), 662.
22 Tian F, Ren Z. Angewandte Chemie, 2019, 131(18), 5882.
23 Perri J A, La Placa S, Post B. Acta Crystallographica, 1958, 11(4), 310.
24 Tian F, Song B, Lv B, et al. Applied Physics Letters, 2018, 112(3), 031903.
25 Xing J, Glaser E R, Song B, et al. Applied Physics Letters, 2018, 112(24), 241903.
26 Lyons J L, Varley J B, Glaser E R, et al. Applied Physics Letters, 2018, 113(25), 251902.
27 Liu T H, Song B, Meroueh L, et al. Physical Review B, 2018, 98(8), 081203.
28 Schäfer H. Chemische transportreaktionen: der transport anorganischer stoffe über die gasphase und seine anwendungen. Verlag Chemie, GER, 1962, pp. 885.
29 Binnewies M, Glaum R, Schmidt M, et al. Zeitschrift für anorganische und allgemeine Chemie, 2013, 639(2), 219.
30 Gamage G A, Chen K, Chen G, et al. Materials Today Physics, 2019, 11, 100160.
31 Tian F, Luo K, Xie C, et al. Applied Physics Letters, 2019, 114(13), 131903.
32 Gao F, He J, Wu E, et al. Physical Review Letters, 2003, 91(1), 015502.
33 He J, Wu E, Wang H, et al. Physical Review Letters, 2005, 94(1), 015504.
34 García A, Cohen M L. Physical Review B, 1993, 47(8), 4215.
35 Le Page Y, Saxe P. Physical Review B, 2002, 65(10), 104104.
36 Wang J, Yip S, Phillpot S R, et al. Physical Review Letters, 1993, 71(25), 4182.
37 Kang J S, Li M, Wu H, et al. Applied Physics Letters, 2019, 115(12), 122103.
38 Hill R. Proceedings of the Physical Society, Section A, 1952, 65(5), 349.
39 Daoud S, Bioud N, Bouarissa N. Materials Science Semiconductor Processing, 2015, 31, 124.
40 Li P, Hao X, Lu S, et al. Science China Materials, 2023, 66(4), 1675.
41 Yue S, Tian F, Sui X, et al. Science, 2022, 377(6604), 433.
42 Bushick K, Chae S, Deng Z, et al. Npj Computational Materials, 2020, 6(1), 3.
43 Bushick K, Mengle K, Sanders N, et al. Applied Physics Letters, 2019, 114(2), 022101.
44 Song B, Chen K, Bushick K, et al. Applied Physics Letters, 2020, 116(14), 141903.
45 Sun H, Chen K, Gamage G A, et al. Materials Today Physics, 2019, 11, 100169.
46 Cahill D G. Review of Scientific Instruments, 2004, 75(12), 5119.
47 Yue S, Gamage G A, Mohebinia M, et al. Materials Today Physics, 2020, 13, 100194.
48 Fava M, Protik N H, Li C, et al. Npj Computational Materials, 2021, 7(1), 54.
49 Chen X, Li C, Xu Y, et al. Chemistry of Materials, 2021, 33(17), 6974.
50 Protik N H, Carrete J, Katcho N A, et al. Physical Review B, 2016, 94(4), 045207.
51 Zhou Y, Hsieh W P, Chen C C, et al. Applied Physics Letters, 2022, 121(12).
52 Whiteley C E, Zhang Y, Gong Y, et al. Journal of Crystal Growth, 2011, 318(1), 553.
53 Wei L, Kuo P K, Thomas R L, et al. Physical Review Letters, 1993, 70(24), 3764.
54 Lindsay L, Broido D A, Reinecke T L. Physical Review B, 2013, 88(14), 144306.
55 Kang J S, Li M, Wu H, et al. Nature Electronics, 2021, 4(6), 416.
56 Cui Y, Qin Z, Wu H, et al. Nature Communications, 2021, 12(1), 1284.
57 Wang S, Swingle S F, Ye H, et al. Journal of the American Chemical Society, 2012, 134(27), 11056.
58 Cao M, Ni L, Wang Z, et al. Applied Surface Science, 2021, 551, 149364.
[1] 王梓霄, 熊良涛, 李浩源. 共价有机框架材料的热导和热电应用研究进展[J]. 材料导报, 2024, 38(12): 24040129-8.
[2] 叶慧, 沈天成, 陈远志, 徐进. 太阳能电池用球形银颗粒的液相法制备研究[J]. 材料导报, 2024, 38(1): 22050236-5.
[3] 刘小村, 潘明艳. Ⅰ掺杂提高铅固溶立方相AgBiSe2热电性能[J]. 材料导报, 2023, 37(5): 21060082-5.
[4] 武安华, 周声耀, 戴云, 张中晗, 张振, 寇华敏, 王皙彬, 苏良碧. 激光加热基座法单晶光纤生长技术[J]. 材料导报, 2023, 37(3): 22110264-9.
[5] 刘锋, 陈昆峰, 薛冬峰. 稀土倍半氧化物晶体材料研究进展[J]. 材料导报, 2023, 37(3): 22110093-7.
[6] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[7] 刘电超, 金国, 井勇智, 崔秀芳, 房永超, 陈卓, 王薪贺. 稀土氧化物掺杂对YSZ热障涂层热物理性能影响的研究进展[J]. 材料导报, 2023, 37(24): 22040242-6.
[8] 胡冬冬, 宋述鹏, 刘俊男, 毕江元, 丁兴. CVD法制备单层二硒化钨薄膜及其生长机制研究[J]. 材料导报, 2023, 37(2): 21050222-6.
[9] 柴涛, 耿传刚, 房大然, 赵圣诗, 林小娉, 董允. 柱状多晶Mg-Gd-Y合金形变组织演变及形变硬化机制[J]. 材料导报, 2023, 37(10): 21110055-6.
[10] 郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
[11] 郭靖, 孟永强, 孙金峰, 张少飞. 高导热金刚石/铜复合材料的制备与界面调控研究进展[J]. 材料导报, 2022, 36(15): 20090233-7.
[12] 王挺, 高业栋, 恽迪, 王冠, 周毅, 张坤, 郭子萱, 吕亮亮. 金属燃料辐照模型关于孔隙率的改进及快堆金属燃料性能分析程序开发[J]. 材料导报, 2022, 36(11): 21040054-5.
[13] 张鹏居, 钱钊, 刘相法. Al-B-C晶种合金对6201铝合金导热及力学性能的作用机理分析[J]. 材料导报, 2021, 35(9): 9028-9032.
[14] 王鹏程, 赵运才, 刘明, 王慧鹏, 马国政, 王海斗. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
[15] 马超, 王静, 冀志江, 王永超, 解帅, 李衎, 李飞. 赤藓糖醇基复合相变材料的研究进展[J]. 材料导报, 2021, 35(11): 11179-11187.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed