Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 21110055-6    https://doi.org/10.11896/cldb.21110055
  金属与金属基复合材料 |
柱状多晶Mg-Gd-Y合金形变组织演变及形变硬化机制
柴涛1, 耿传刚1, 房大然1,2, 赵圣诗1,2, 林小娉1,2,3,*, 董允1,2
1 东北大学材料科学与工程学院,沈阳 110819
2 东北大学秦皇岛分校资源与材料学院,河北 秦皇岛 066004
3 秦皇岛先进金属与成型技术实验室,河北 秦皇岛 066004
Microstructure Evolution and Strain Hardening Mechanism of Mg-Gd-Y Alloy with Columnar Polycrystalline Structure
CHAI Tao1, GENG Chuangang1, FANG Daran1,2, ZHAO Shengshi1,2, LIN Xiaoping1,2,3,*, DONG Yun1,2
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, Hebei, China
3 Qinhuangdao Key Laboratory of Advanced Metal Materials and Forming Technology, Qinhuangdao 066004, Hebei, China
下载:  全 文 ( PDF ) ( 21932KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用定向凝固技术制备了生长取向集中于[224-3]、基面〈a〉滑移取向因子(Schmid factor,SF)大于0.4的柱状多晶Mg-6.38Gd-0.45Y合金,并研究了实验合金室温拉伸形变行为。结果表明,形变初期,软取向柱状晶内首先启动{101-2}拉伸孪生协调应变。形变过程中,{101-2}拉伸孪晶界快速、大范围扩展,吞噬基体并使基体取向逐渐转为[1-21-0](SF<0.15),于是启动{101-1}压缩孪生和{101-1}-{101-2}双孪生协调应变。压缩孪晶和双孪晶易形成压缩孪晶带群,并贯穿整个晶粒,滑移或扩展的位错及拉伸孪晶界与压缩孪晶带群交织在一起,产生形变硬化,提高合金强度的同时也形成应力高度集中分布区域,成为微裂纹形成之地。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柴涛
耿传刚
房大然
赵圣诗
林小娉
董允
关键词:  晶体生长取向  Mg-Gd-Y合金  拉伸孪生  压缩孪晶带群    
Abstract: The Mg-6.38Gd-0.45Y alloy with columnar polycrystalline structure was prepared by directional solidification. The growth orientation of the columnar crystals was concentrated in [224-3], and the Schmid factor (SF) of basal 〈a〉 slip system of columnar crystals was greater than 0.4. Afterwards, the tensile deformation of the alloy at room temperature was studied. At the initial stage of deformation, {101-2} tensile twinning in columnar crystals in soft orientation were activated to coordinate strain. Thereafter, {101-2} tensile twin boundaries expanded rapidly and widely, and swallowed the matrix, which gradually changed the orientation of the matrix to [1-21-0] (SF<0.15). As a result, {101-1} compression twinning and {101-1}-{101-2} double twinning were started to coordinate deformation. Compression twins and double twins were easy to form compression twin bands, and to run through the whole grain. Subsequently, the extended dislocations and tensile twin boundaries were intertwined with compression twin bands, and thus strain hardening occurs. However, the strengthening resulted in severe stress concentration in some regions, where microcracks would arise.
Key words:  growth orientation    Mg-Gd-Y alloy    tensile twinning    compression twin bands
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  TG146.22  
基金资助: 国家自然科学基金(51775099);河北省自然科学基金(E2018501033;E2021501019)
通讯作者:  *林小娉,东北大学秦皇岛分校资源与材料学院教授、博士研究生导师。1983年大连理工大学机械金属材料专业本科毕业,1989年沈阳工业大学铸造专业硕士毕业,2003年河北工业大学材料物理与化学专业博士毕业。目前主要从事先进钢铁材料与有色金属材料的凝固、相变理论及其强韧化、形状记忆合金与马氏体相变等方面的研究工作。发表被SCI、EI收录的科技论文40余篇。lxping3588@163.com   
作者简介:  柴涛,2019年7月于河北科技大学获得工学学士学位。现为东北大学秦皇岛分校资源与材料学院硕士研究生,在林小娉教授的指导下进行研究。目前主要研究领域为定向凝固镁合金塑性变形机制。
引用本文:    
柴涛, 耿传刚, 房大然, 赵圣诗, 林小娉, 董允. 柱状多晶Mg-Gd-Y合金形变组织演变及形变硬化机制[J]. 材料导报, 2023, 37(10): 21110055-6.
CHAI Tao, GENG Chuangang, FANG Daran, ZHAO Shengshi, LIN Xiaoping, DONG Yun. Microstructure Evolution and Strain Hardening Mechanism of Mg-Gd-Y Alloy with Columnar Polycrystalline Structure. Materials Reports, 2023, 37(10): 21110055-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110055  或          http://www.mater-rep.com/CN/Y2023/V37/I10/21110055
1 Li Y, Wu S, Bian H, et al. Scripta Materialia, 2013, 68(3-4), 171.
2 Meng L, Yang P, Xie Q, et al. Materials Transactions, 2008, 49(4), 710.
3 Kondoh K, Tsuzuki R, Du W, et al. Materials Science Forum, 2005, 475-479, 453.
4 Xi J J, Liu J. Hot Working Technology, 2014, 43(10), 6 (in Chinese).
席俊杰, 刘杰. 热加工工艺, 2014, 43(10), 6.
5 Livingston J D, Chalmers B. Acta Metallurgica, 1957, 5(6), 322.
6 Weins M, Chalmers B, Gleiter H, et al. Scripta Metallurgica, 1969, 3(8), 601.
7 Hauser J J, Chalmers B. Acta Metallurgica, 1961, 9(9), 802.
8 Fu H Z, Guo J J, Liu L, et al. Directional solidification and processing of advanced materials, Science Press, China, 2008 (in Chinese).
傅恒志, 郭景杰, 刘林, 等. 先进材料定向凝固, 科学出版社, 2008.
9 Liu S, Yang G, Jie W. Acta Metallurgica Sinica (English Letters), 2014, 27(6), 1134.
10 Wang J H, Yang G Y, Liu S J, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(5), 1294.
11 Hagihara K, Ueyama R, Yamasaki M, et al. Acta Materialia, 2021, 209, 116797.
12 Zhao S S, Lin X P, Dong Y, et al. Materials Science and Engineering A, 2018, 729, 300.
13 Yamashita A, Horita Z, Langdon T G. Materials Science & Engineering A, 2001, 300, 142.
14 Amoorezaei M, Gurevich S, Provatas N. Magnesium Technology, 2016, 2011, 101.
15 Zhao S S, Lin X P, Chai T, et al. Materials Science and Engineering A, 2020, 782, 139272.
16 Lin X P, Zhao T B, Yun D, et al. Materials Science and Engineering A, 2017, 700, 681.
17 Chen X X, Li Q S, Fan Y Y. China Foundry Machinery and Technology, 2009(2), 19 (in Chinese).
陈孝先, 李秋书, 范艳艳. 中国铸造装备与技术, 2009(2), 19.
18 Hansen L N, Zimmerman M E, Kohlstedt D L. Journal of Geophysical Research Solid Earth, 2011, 116, B8.
19 Yu S, Liu C, Gao Y, et al. Materials Letters, 2016, 165, 185.
20 Akhtar A, Teghtsoonian E. Acta Metallurgica, 1969, 17(11), 1339.
[1] 唐昌平, 李国栋, 李志云, 孙玹琪. 铸造Mg-Gd-Y-Nd-Zr合金在时效过程中的组织与性能演变[J]. 《材料导报》期刊社, 2018, 32(4): 574-578.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed