Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 22110104-5    https://doi.org/10.11896/cldb.22110104
  无机非金属及其复合材料 |
Ti基Ru-Ir-Ti电极在稀氯化钠溶液中的电解失效行为
杨瑞锋1,2, 贾波1,2,*, 郭敏1,2, 武晨航1,2, 李金岳1,2, 郝小军1,2, 冯庆1,2
1 西安泰金工业电化学技术有限公司,西安 710021
2 西北有色金属研究院,西安 710016
Electrolytic Invalidation Behavior of Ti Based Ru-Ir-Ti Electrode in Dilute Sodium Chloride Solution
YANG Ruifeng1,2, JIA Bo1,2,*, GUO Min1,2, WU Chenhang1,2, LI Jinyue1,2, HAO Xiaojun1,2, FENG Qing1,2
1 Xi'an Taijin Industrial Electrochemical Technology Co., Ltd., Xi'an 710021, China
2 Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
下载:  全 文 ( PDF ) ( 20893KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属钛电极具有高催化活性、高耐久性能、易加工生产等优点,可应用于氯碱工业、饮用水消毒、循环冷却水处理等方面,在许多领域拥有广阔的发展前景。然而,其失效机理大多在硫酸溶液中进行,不能真实反映电极在氯化钠环境下工作的实际状况。鉴于此,本工作采用电化学与表面物理方法对Ru-Ir-Ti电极在稀氯化钠溶液中的加速电解过程进行了研究。对加速电解不同阶段的研究表明:电极的失效是一个渐变过程,电解前期,涂层表面钌的溶解速率较快,之后电极呈现均匀腐蚀,活性物质Ru、Ir逐渐减少。涂层在表面和内部的电解消耗导致涂层疏松、结构被破坏,当活性物质减少到临界点时,起导电性的电催化活性物质缺失,反应进行缓慢,槽电压升高,这是电极失效的主要原因,研究过程尚未发现电极基底发生钝化现象。同时研究表明,电解产生的次氯酸钠不会对电极性能造成影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨瑞锋
贾波
郭敏
武晨航
李金岳
郝小军
冯庆
关键词:  钛电极  氯化钠溶液  失效机理  均匀腐蚀  电极失效  次氯酸钠    
Abstract: Titanium electrode has been regarded as a promising material with wide applications in chlor alkali industry, drinking water disinfection, circulating cooling water treatment owing to its unique properties, such as high catalytic activity, high durability, easy processing, etc. However, the invalidation mechanism is mostly carried out in sulfuric acid solution, which can not really reflect the actual situation of the electrode working in sodium chloride environment. In view of this, electrochemical and surface physical methods were used to study the accelerated electrolysis process of Ru-Ir-Ti electrode in dilute sodium chloride solution. The results of different stages of accelerated electrolysis show that the invalidation of the electrode is a gradual process, and the dissolution rate of ruthenium on the surface of the coating is faster in the early stage of electrolysis, and then the electrode is uniformly corroded, and the active materials Ru and Ir are gradually reduced. The electrolytic consumption of the coating on the surface and inside leads to loose coating and structural damage, when the active substance decreases to the critical point, the electrocatalytic active substance with conductivity is missing, the reaction proceeds slowly, and the cell voltage rises, which is the main reason for electrode invalidation, and the passivation phenomenon of the electrode substrate has not been found in the research process. At the same time, studies have shown that sodium hypochlorite produced by electrolysis will not affect the performance of the electrode.
Key words:  titanium electrode    sodium chloride solution    invalidation mechanism    gradually reduced    electrode invalidation    sodium hypochlorite
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TQ151  
基金资助: 陕西省重点研发计划(2017ZDXM-GY-041)
通讯作者:  *贾波,硕士,高级工程师。现为西安泰金工业电化学技术有限公司副总经理,主要负责公司的技术开发工作,研究方向为电子玻璃封装材料、钛基复合电极材料。申请专利21件,授权专利18件。175981942@qq.com   
作者简介:  杨瑞锋,硕士,工程师,主要研究方向为钛电极材料的开发与应用。申请发明专利10余项,授权发明专利3项,实用新型4项,发表论文3篇。
引用本文:    
杨瑞锋, 贾波, 郭敏, 武晨航, 李金岳, 郝小军, 冯庆. Ti基Ru-Ir-Ti电极在稀氯化钠溶液中的电解失效行为[J]. 材料导报, 2024, 38(13): 22110104-5.
YANG Ruifeng, JIA Bo, GUO Min, WU Chenhang, LI Jinyue, HAO Xiaojun, FENG Qing. Electrolytic Invalidation Behavior of Ti Based Ru-Ir-Ti Electrode in Dilute Sodium Chloride Solution. Materials Reports, 2024, 38(13): 22110104-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110104  或          http://www.mater-rep.com/CN/Y2024/V38/I13/22110104
1 Xing Y, Zhang X K, Zhou K G, et al. Chemical Industry and Enginee-ring Progress, 2021, 40(5), 2909 (in Chinese).
幸艳, 张雪凯, 周康根, 等. 化工进展, 2021, 40(5), 2909.
2 He Z C, Xia Z X, Hu J X, et al. Chinese Journal of Energetic Materials, 2020, 28(1), 52 (in Chinese).
何志成, 夏智勋, 胡建新, 等. 含能材料, 2020, 28(1), 52.
3 Qiu C, Chang M. Journal of Tianjin University of Technology, 2010, 26(2), 36.
4 Kadakia K, Datta M, Velikokhatnyi O, et al. International Journal of Hydrogen Energy, 2012, 37, 3001.
5 Siracusano S, Hodnik N, Jovanovic P, et al. Nano Energy, 2017, 40, 618.
6 Liu Y P, Liang X, Chen H, et al. Chinese Journal of Catalysis, 2021, 42(7), 1054 (in Chinese).
刘一蒲, 梁宵, 陈辉, 等. 催化学报, 2021, 42(7), 1054.
7 Rozain C, Mayousse E, Guillet N, et al. Applied Catalysis B:Environmental, 2016, 182, 123.
8 Yu H, Danilovic N, Wang Y, et al. Applied Catalysis B:Environmental, 2018, 239, 133.
9 Bernt M, Siebel A, Gasteiger H. Journal of the Electrochemical Society, 2018, 165, F305.
10 Bernt M, Hartig-Weiß A, Tovini M, et al. Chemie Ingenieur Technik, 2020, 92, 31.
11 Camillo S, Lorenz J, Matthias K, et al. ACS Applied Materials & Interfaces, 2021, 13, 3748.
12 Tian X L, Tao J, Tao H J, et al. The Chinese Journal of Nonferrous Metals, 2009, 19(5), 904 (in Chinese).
田西林, 陶杰, 陶海军, 等. 中国有色金属学报, 2009, 19(5), 904.
13 Yuan P, Robert J, William A. Journal of the American Chemical Society, 2017, 139, 149.
14 Olga K, Jan-Philipp G, Simon G, et al. Angewandte Chemie International Edition, 2018, 57, 2488.
15 Johannes G, Tim A, Adriaan W, et al. Journal of the American Chemical Society, 2018, 140, 10270.
16 Koshal K, Sulay S, Alhad P. Journal of the Electrochemical Society, 2018, 65(15), J3276.
17 Wenting X, Geir M, Svein S, etal. Electrochimica Acta, 2019, 295, 204.
18 Wang K, Han Y, Wang J T, et al. Electrochemistry, 2006, 12(1), 74 (in Chinese).
王科, 韩严, 王均涛, 等. 电化学, 2006, 12(1), 74.
19 Balaya P, Li H, Kienle L, et al. Advanced Functional Materials, 2003, 13, 621.
20 Roy C, Rao R, Stoerzinger K, et al. ACS Energy Letter, 2018, 3, 2045.
21 Escudero-Escribano M, Pedersen A, Paoli E, etal. Journal of Physical Chemistry B, 2018, 122, 947.
22 Terezo A, Pereira E. Electrochim Acta, 1999, 44, 4507.
23 Wang L, Saveleva V, Zafeiratos S, et al. Nano Energy, 2017, 34, 385.
24 Danilovic N. Journal of Physical Chemistry Letters, 2014, 5, 2474.
25 Kun D, Zhang L, Shan J, et al. Nature Communications, 2022, 13, 5448.
26 Retuerto M. Nature Communications, 2019, 10, 2041.
27 Qin Y, Yu T, Deng S, etal. Nature Communications, 2022, 13, 3784.
28 Yu T Q, Xu Q L, Qian G F, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(47), 17520.
29 Chang S H, Danilovic N, Chang K C, et al. Nature Communications, 2014, 5, 4191.
30 Ling T, Lin D Y, Wang H, et al. Nature Communications, 2017, 8, 1509.
31 Yao S D, Shen J N, Sun J, et al. Rare Metal Materials and Engineering, 2006, 35(12), 1916 (in Chinese).
姚书典, 沈嘉年, 孙娟, 等. 稀有金属材料与工程, 2006, 35(12), 1916.
32 Xu H Q, Hu Y H, Chen L G, et al. Electroplating & Finishing, 2015, 34(23), 1369 (in Chinese).
徐海清, 胡耀红, 陈力格, 等. 电镀与涂饰, 2015, 34(23), 1369.
33 Fan Y Z, Wang K, Zhang Y, et al. New Technology & New Process, 2013(11), 115 (in Chinese).
范亚卓, 王昆, 张颖, 等. 新技术新工艺, 2013(11), 115.
34 Zhang Q, Peng J H, Cai C R, et al. Journal of Chinese Electron Microscopy Society, 2001, 20(4), 410 (in Chinese).
张琼, 彭俊华, 蔡传荣, 等. 电子显微学报, 2001, 20(4), 410.
35 Sun M M, Wang Q F, Zou J J, et al. Chemical Industry and Enginee-ring, 2014, 31(5), 8 (in Chinese).
孙猛猛, 王庆法, 邹吉军, 等. 化学工业与工程, 2014, 31(5), 8.
36 Chen Y Y, Tang D, Shao Y Q, et al. Journal of Fujian University of Technology, 2008, 6(6), 663 (in Chinese).
陈永毅, 唐电, 邵艳群, 等. 福建工程学院学报, 2008, 6(6), 663.
37 Zeng X A, Qin G F, Li Z Y, et al. Journal of South China University of Technology (Natural Science Edition), 2005, 33(10), 72 (in Chinese).
曾新安, 秦贯丰, 李忠彦, 等. 华南理工大学学报(自然科学版), 2005, 33(10), 72.
38 Feng Q, Yang R F, Wang Z, et al. Material Protection, 2021, 54(9), 37 (in Chinese).
冯庆, 杨瑞锋, 王正, 等. 材料保护, 2021, 54(9), 37.
39 Chen Y Y, Tang D. Rare Metal Materials and Engineering, 2009, 38(7), 1214 (in Chinese).
陈永毅, 唐电. 稀有金属材料与工程, 2009, 38(7), 1214.
40 Zhang Q, Yu Y L, Zhang T R. Journal of Fuzhou University (Natural Science Edition), 2004, 32(3), 317 (in Chinese).
张琼, 余运龙, 张天然. 福州大学学报(自然科学版), 2004, 32(3), 317.
41 Yao S D. Failure mechanism and surface modification for noble oxide coated titanium anodes. Ph. D. Thesis, Shanghai University, China, 2006 (in Chinese).
姚书典. 钛基贵金属氧化物涂层阳极的失效机制与表面改性. 博士学位论文, 上海大学, 2006.
[1] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[2] 秦唯铭, 杜冰, 朱绍伟, 陈立明, 李卫国, 樊振华. 环境温度对长玻纤增强聚丙烯单向拉伸力学性能的影响[J]. 材料导报, 2023, 37(20): 22030014-6.
[3] 陈亚军, 李思伟, 孟宪明, 史丽婷, 肖泽文. 铝/钢异种材料电阻点焊研究进展[J]. 材料导报, 2023, 37(13): 21080153-10.
[4] 窦学铮, 蒋立武, 宋尽霞, 赵云松. 镍基单晶高温合金力学性能各向异性的研究进展[J]. 材料导报, 2022, 36(24): 21040222-15.
[5] 邓云飞, 安静丹, 任光辉, 魏刚. 铝合金圆波纹夹芯板对半球形体的低速冲击响应特性及失效机制[J]. 材料导报, 2022, 36(24): 21080249-6.
[6] 刘文超, 高峰, 曲江英, 籍少敏, 霍延平. 高镍三元正极材料失效机制与改性[J]. 材料导报, 2022, 36(21): 20100053-9.
[7] 武多多, 郑会龙, 康振亚, 习常清, 张谭. 基于金属骨架的复合材料混合结构拉伸性能与失效机理分析[J]. 材料导报, 2022, 36(20): 21050214-7.
[8] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[9] 乔敏, 单广程, 高南箫, 陈健, 吴井志, 朱伯淞, 冉千平. 混凝土气泡调控型表面活性剂的研究进展[J]. 材料导报, 2022, 36(18): 20090232-7.
[10] 房玉鑫, 王优强, 张平, 罗恒. SiCp/Al复合材料切削加工中颗粒失效及表面缺陷形成机理仿真研究[J]. 材料导报, 2022, 36(13): 21010146-8.
[11] 朱烨森, 刘梁, 徐云泽, 王晓娜, 刘刚, 黄一. 溶液pH和温度对X65管线钢焊缝非均匀腐蚀的影响[J]. 材料导报, 2022, 36(1): 20090152-7.
[12] 林震霞, 党莹, 徐祺, 李丹. 690合金在核电厂一、二回路工况下的均匀腐蚀性能研究[J]. 材料导报, 2020, 34(Z2): 437-440.
[13] 常兆峰, 田路萍, 梁妮, 张朋超, 周丹丹, 张军, 吴敏. 苯多酸分子标志物法对NaClO氧化前后生物炭的性质描述[J]. 材料导报, 2019, 33(12): 2089-2094.
[14] 刘洋, 何晓聪, 邢保英, 邓聪, 张先炼. 泡沫金属夹层板自冲铆接头的疲劳性能及失效机理[J]. 《材料导报》期刊社, 2018, 32(14): 2431-2436.
[15] 何柏林,金辉,张枝森,谢学涛,丁江灏. SMA490BW钢对接接头高周疲劳性能的机理探究[J]. 《材料导报》期刊社, 2018, 32(12): 2008-2014.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed