Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 22100215-7    https://doi.org/10.11896/cldb.22100215
  金属与金属基复合材料 |
脉冲磁场孕育处理下A356铝合金凝固组织的演变规律
宋志起1, 赵旭东2, 王军1,*, 胡朝晟2, 刘永珍1, 麻永林1
1 内蒙古科技大学材料与冶金学院,内蒙古 包头 014010
2 包头汇众铝合金锻造有限公司,内蒙古 包头 014030
Evolution of Solidification Microstructure of A356 Aluminum Alloy Treated by Pulse Magnetic Field
SONG Zhiqi1, ZHAO Xudong2, WANG Jun1,*, HU Chaosheng2, LIU Yongzhen1, MA Yonglin1
1 Institute of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
2 Baotou Huizhong Aluminum Alloy Forging Co., Ltd., Baotou 014030, Inner Mongolia, China
下载:  全 文 ( PDF ) ( 15750KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于自行设计的磁场晶粒细化装置,研究在不同频率的脉冲磁场孕育处理下A356铝合金凝固组织的演变规律,利用蔡司显微镜(OM)、场发射扫描电镜(FESEM)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)等测试方法对A356铝合金的凝固组织进行分析。结果表明:脉冲磁场孕育处理能降低形核激活能与临界形核半径,影响液相线以上原子团的演变规律,使得原子团的尺寸减小,数目增加,并在更小的临界尺度上形成大量稳定晶核,从而导致A356铝合金凝固组织中初生α-Al相和共晶Si相显著细化;其中频率为30 Hz的脉冲磁场细化效果最佳,与未处理相比,试样初生α-Al晶粒平均尺寸下降39%,共晶Si平均尺寸下降60%。同时α-Al晶粒磁各向异性产生的磁各向异性能与磁转矩导致α-Al晶粒发生旋转,使得晶粒沿(200)面择优生长。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋志起
赵旭东
王军
胡朝晟
刘永珍
麻永林
关键词:  A356铝合金  脉冲磁场  凝固组织  频率  初生α-Al相    
Abstract: Based on the self-designed magnetic field grain refinement device, the evolution law of solidification microstructure of A356 aluminum alloy under different frequency of pulsed magnetic field incubation treatment was studied. The solidification structure of A356 aluminum alloy was analyzed by Zeiss microscope (OM), field emission scanning electron microscope (FESEM), X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). The results showed that:under pulsed magnetic field inoculation can reduce nucleation activation energy and the critical nucleation radius, affects the evolution law of the groups above liquidus, makes the size of the groups of watoms is reduced, the number increased, and the smaller the critical dimension on a large number of stable crystal nucleus formation, so as to make the primary α-Al in A356 aluminum alloy solidification organization and eutectic silicon phase significant refinement, compared with the untreated samples, the average size of primary α-Al grains decreases by 39%, and the average size of eutectic silicon decreases by 60%. At the same time, due to the magnetic anisotropy of α-Al grains, the magnetic anisotropy energy and magnetic torque lead to the rotation of α-Al grains, so that the grains grow along the (200) plane preferentially.
Key words:  A356 aluminum alloy    pulsed magnetic field    solidification structure    frequency    primary α-Al phase
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TF821  
基金资助: 内蒙古自治区科技计划项目(2021GG0096)
通讯作者:  *王军,内蒙古科技大学材料与冶金学院副教授、硕士研究生导师。2001年北京科技大学硕士毕业,2013年东北大学有色金属冶金专业博士毕业。参加了多项国家级及企业合作项目,目前主要从事电磁冶金及材料新技术、稀土冶金工艺和新材料等方面的研究工作,发表论文30余篇。jwkwj@imust.edu.cn   
作者简介:  宋志起,2020年7月于郑州工程技术学院获得工学学士学位。现为内蒙古科技大学材料与冶金学院硕士研究生,在王军教授的指导下进行研究。目前主要研究领域为电磁冶金、脉冲磁场对铝合金凝固组织及性能的影响。
引用本文:    
宋志起, 赵旭东, 王军, 胡朝晟, 刘永珍, 麻永林. 脉冲磁场孕育处理下A356铝合金凝固组织的演变规律[J]. 材料导报, 2024, 38(13): 22100215-7.
SONG Zhiqi, ZHAO Xudong, WANG Jun, HU Chaosheng, LIU Yongzhen, MA Yonglin. Evolution of Solidification Microstructure of A356 Aluminum Alloy Treated by Pulse Magnetic Field. Materials Reports, 2024, 38(13): 22100215-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100215  或          http://www.mater-rep.com/CN/Y2024/V38/I13/22100215
1 Ejiofor J M, Reddy R G. Journal of Materials Engineering and Performance, 1997, 6(6), 785.
2 Atxaga G, Pelayo A, Risarri A M. Materials Science and Technology, 2001, 17(44), 446.
3 Sebaie O E, Samuel A M, Samuel F H, et al. Materials Science and Engineering:A, 2008, 456, 241.
4 Faraji M, Katgerman L. Micron, 2010, 41, 554.
5 Zhou Y H, Hu Z Q, Jie W Q. Solidification technology, Mechanical Industry Press, China, 1998, pp.34 (in Chinese).
周尧和, 胡壮麒, 介万奇. 凝固技术, 机械工业出版社, 1998, pp.34.
6 Shen N F, Tang Y L, Guan S K, et al. Acta Metallurgica Sinica, 1996, 32(7), 673 (in Chinese).
沈宁福, 汤亚力, 关绍康, 等. 金属学报, 1996, 32(7), 673.
7 Zhang Y H, Zhong H G, Zhai Q J. Journal of Iron and Steel Research, 2017, 29(4), 249.
8 Wang B, Wang J Y, Tang L D, et al. Transactions of Materials and Heat Treatment, 2015, 36(S1), 67 (in Chinese).
王冰, 王家毅, 唐立丹, 等. 材料热处理学报, 2015, 36(S1), 67.
9 Wang J Z, Qi J G, Zhao Z F, et al. The Chinese Journal of Nonferrous Metals, 2013, 23(9), 2792 (in Chinese).
王建中, 齐锦刚, 赵作福, 等. 中国有色金属学报, 2013, 23(9), 2792.
10 Li Y J, Tao W Z, Yang Y S. Journal of Materials Processing Technology, 2012, 212(4), 903.
11 Yan C L. Electromagnetic energy semi-continuous casting Al-Si-Cu-Mg-Ni effect of microstructure and composition segregation of piston alloys. Master's Thesis, Inner Mongolia University of Science and Technology, China, 2021 (in Chinese).
闫春雷. 电磁能对半连续铸造Al-Si-Cu-Mg-Ni活塞合金微观组织与成分偏析的影响. 硕士学位论文, 内蒙古科技大学, 2021.
12 Asai S, Sassa K. Science and Technology of Advanced Materials, 2003, 4, 455.
13 Zhong H. Study on the regulation mechanism of strong static magnetic field on the growth of α-Al dendrite. Ph. D. Thesis, Shanghai University, China, 2017 (in Chinese).
钟华. 强静磁场对α-Al枝晶生长过程调控机理的研究. 博士学位论文, 上海大学, 2017.
14 Sugiyama T, Tahashi M, Sassa K, et al. Transactions of the Iron & Steel Institute of Japan, 2003, 43(6), 855.
15 Bai Q W, Ma Y L, Xing S Q, et al. Materials Reports, 2018, 32(12), 2021 (in Chinese).
白庆伟, 麻永林, 邢淑清, 等. 材料导报, 2018, 32(12), 2021.
16 Li S, Wu C, Sassa K, et al. Materials Science and Engineering:A, 2006, 422(1), 227.
17 Li C J. DTA study on the nucleation and growth of metal solidification process under magnetic field. Ph. D. Thesis, Shanghai University, China, 2011 (in Chinese).
李传军. 磁场下金属凝固过程形核与生长的差热分析研究. 博士学位论文, 上海大学, 2011.
18 Bai Q, Ma Y, Xing S, et al. Chinese Journal of Engineering, 2017, 39(12), 1828.
19 Bai Q, Ma Y, Xing S, et al. Journal of Materials Engineering and Performance, 2018, 27(2), 857.
20 Chen G J, Zhang Y J, Yang Y S, et al. Journal of Northeastern University (Natural Science Edition), 2015, 36(4), 493 (in Chinese).
陈国军, 张永杰, 杨院生, 等. 东北大学学报(自然科学版), 2015, 36(4), 493.
21 Bao X Y. Numerical simulation and experimental study on solidification of 7A04 aluminum alloy under rectangular wave magnetic field. Master's Thesis, Inner Mongolia University of Science and Technology, China, 2019 (in Chinese).
鲍鑫宇. 矩形波磁场下7A04铝合金凝固数值模拟和实验研究. 硕士学位论文, 内蒙古科技大学, 2019.
22 Terzieff P, Lück R. Journal of Alloys and Compounds, 2003, 360(1-2), 205.
23 Gale W F, Totemeier T C. Smithells metals reference book(8th Ed), Butterworth Heinemann, New York, 2003, pp.8.
24 Gündüz M, Hunt J D. Acta Metallurgica, 1989, 37(7), 1839.
25 Eskin G I. Zeitschrift Für Metallkunde, 1988, 93(6), 502.
26 Mi G B, Li P J, He L J. Chinese Science:Physics Mechanics Astronomy, 2010, 40(9), 1071 (in Chinese).
弭光宝, 李培杰, 何良菊. 中国科学:物理学 力学 天文学, 2010, 40(9), 1071.
27 Mi G B, Li P J, Попель П С, et al. Chinese Science:Physics Mechanics Astronomy, 2010, 40 (10), 1235 (in Chinese).
弭光宝, 李培杰, Попель П С, 等. 中国科学:物理学 力学 天文学, 2010, 40(10), 1235.
28 Zhang R L. Empirical electron theory of solids and molecules, Jilin Science and Technology Press, China, 1993, pp.16 (in Chinese).
张瑞林. 固体与分子经验电子理论, 吉林科学技术出版社, 1993, pp.16.
29 Баум Б А, Хасин Г А, Тягунов Г В, И Др. Жидкая сталь, Москва:Металлургия, Russia, 1984, pp.5.
30 Ершов Г С, Бычнов Ю Б. Высокопрочные алюминиевые сплавы на основе вторичного сырья, Москва:Металлургия, Russia, 1979, pp.5.
31 Mi G B, Li P J, Wang J, et al. The Chinese Journal of Nonferrous Metals, 2011, 21(3), 560 (in Chinese).
弭光宝, 李培杰, 王晶, 等. 中国有色金属学报, 2011, 21(3), 560.
32 Dubrovskii S A, Shipelnikov A A, Rogotovskii A N. Transaction of Higher Education-Chernozem, 2008, 11(1), 89.
33 Fan Z, Wang Y, Xia M, et al. Acta Materialia, 2009, 57(16), 4891.
34 Yan C L, Ma Y L, He S, et al. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2022, 37(4), 740.
[1] 陈德钦, 曹雪凤, 黎峰荣, 崔永葆, 李纯纯. 微波介质材料谐振频率温度系数调控的研究现状与展望[J]. 材料导报, 2023, 37(22): 22020176-13.
[2] 郭政伟, 龙伟民, 王博, 祁婷, 李宁波. 焊接残余应力调控技术的研究与应用进展[J]. 材料导报, 2023, 37(2): 20090331-7.
[3] 张磊, 邢志国, 王海斗, 郭伟玲, 李国禄, 黄艳斐, 张执南. 脉冲磁场对合金凝固过程影响的研究进展[J]. 材料导报, 2023, 37(14): 21090053-11.
[4] 周涵, 刘亚, 吴长军, 王建华, 苏旭平. 熔体深过冷过共晶铝硅合金的凝固组织研究[J]. 材料导报, 2023, 37(12): 21100123-6.
[5] 陈剑英, 张恒宇, 肖红, 王府梅. 频率选择表面的可重构及纺织应用[J]. 材料导报, 2022, 36(15): 20110275-7.
[6] 白庆伟, 麻永林, 邢淑清, 于文霞, 陈重毅. 可控电磁能(CEME)时效处理下Al-Zn-Mg-Cu合金的析出及强化机理研究[J]. 材料导报, 2021, 35(20): 20143-20148.
[7] 王龙, 胡德安, 陈益平, 程东海, 江淑园. 铝/铜异种材料交变磁场辅助电弧熔钎焊接头组织和性能[J]. 材料导报, 2021, 35(12): 12119-12122.
[8] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性的影响[J]. 材料导报, 2019, 33(8): 1298-1301.
[9] 王晖, 屈绍波. 小型化频率选择表面研究现状及其应用进展[J]. 材料导报, 2019, 33(5): 881-893.
[10] 王正军. 真空感应电磁悬浮熔炼对A356铝合金组织和性能的影响[J]. 材料导报, 2019, 33(22): 3801-3805.
[11] 刘飞, 尹健, 邵琦, 卢春辉. 脉冲磁场对高含量自生Mg2Si/Mg-Al基复合材料凝固组织的影响[J]. 材料导报, 2019, 33(2): 293-297.
[12] 陈涛, 薛松柏, 翟培卓, 孙子建, 陈卫中, 郭佩佩. 基于图像处理的短路过渡焊熔池振荡特性分析[J]. 材料导报, 2019, 33(16): 2734-2739.
[13] 赵清晨, 王金龙, 张元良, 沈毅鸿, 刘淑杰. 不同加载频率下FV520B-I的疲劳行为与疲劳寿命[J]. 材料导报, 2018, 32(16): 2837-2841.
[14] 匡敬忠, 刘鹏飞, 罗大芳, 周原彬, 黄哲誉. 高岭石热分解反应动力学计算方法对比[J]. 《材料导报》期刊社, 2018, 32(14): 2376-2383.
[15] 樊江磊, 王星星, 吴深, 王霄, 高红霞, 刘建秀. Ni层对时效处理离心浇铸铜基轴瓦组织和性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 68-72.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed