Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21060054-7    https://doi.org/10.11896/cldb.21060054
  金属与金属基复合材料 |
含铝奥氏体不锈钢的强化相析出调控和蠕变性能研究进展
孙钢1, 熊茹2, 唐睿2, 张乐福3, 周张健1,*
1 北京科技大学材料科学与工程学院,北京 100083
2 中国核动力研究设计院反应堆燃料及材料重点实验室,成都 610213
3 上海交通大学核能科学与工程学院,上海 200240
Research Progress on Strengthening Phase Precipitation Regulation and Creep Properties of Aluminum-Containing Austenitic Stainless Steel
SUN Gang1, XIONG Ru2, TANG Rui2, ZHANG Lefu3, ZHOU Zhangjian1,*
1 School of Materials Science and Engineering, University of Science & Technology Beijing, Beijing 100083, China
2 Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
3 School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 2323KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 根据我国的能源结构,发展大容量、高参数的超(超)临界火电机组和高效的先进核能是解决能源短缺与环境污染之间矛盾的主要途径。为了能够长期在高温、高压的恶劣环境下服役,对发电机组和核能系统结构用材料提出了更苛刻的要求。含铝奥氏体不锈钢兼具优异的抗氧化性能和高温强度,可作为超(超)临界电站及超临界水堆等先进能源系统关键部位的候选材料。
   蠕变性能是含铝奥氏体不锈钢应用于先进能源系统的重要服役性能,其与析出相(包括碳化物M23C6及MC、Laves相、NiAl相、FeCr相等)的种类、尺寸和分布状态关系密切。如果析出相能以有效钉扎位错的合适尺寸均匀弥散分布于基体中,且具有较好的高温稳定性,那么合金就能获得优异的高温蠕变性能。
   总结现有的研究成果可知,含铝奥氏体不锈钢的主要发展方向和调控思路是以Super304H、HR3C和TP347HFG为基体,进一步调整Al、N、Si、Ni、V、B等合金元素含量,研究合金在服役过程中纳米级别析出相的分布情况、高温蠕变性能等变化规律。主要研究目标是在控制成本的前提下通过析出相的有效调控,提升合金的高温蠕变性能和抗氧化性能。因此,对析出相的调控方法进行总结和归纳对开发和设计出性能优异的含铝奥氏体不锈钢具有重要的指导意义。
   本文主要综述了含铝奥氏体不锈钢主要析出相的调控方法,包括调控合金元素和优化热机械处理工艺,进而分析了析出相调控与蠕变性能之间的关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙钢
熊茹
唐睿
张乐福
周张健
关键词:  含铝奥氏体不锈钢  析出相  调控  蠕变性能    
Abstract: According to China's energy structure, the development of ultra-supercritical thermal power plants and advanced nuclear energy with high efficiency is an effective way to solve the contradiction between energy shortage and environmental pollution. In order to meet the requirement of long term service in the harsh environment of high temperature, high pressure and corrosive medium, it is urgent to develop new grade material with improved high temperature mechanical properties and oxidation resistance. The newly developed aluminum forming austenitic (AFA) stainless steel shows excellent oxidation resistance and high temperature strength, which is considered as a promising candidate material for key components of advanced energy systems such as ultra-supercritical power plants and supercritical water-cooled reactor.
Creep is an important service property for AFA steels application in advanced energy systems, which is closely related to the feature of precipitated phases (including M23C6 and MC carbide, Laves phase, NiAl phase and FeCr phase), including phase type, size and distribution of precipitates. If the precipitates with good high temperature stability can be controlled to disperse uniformly in the matrix with appropriate size for dislocation pinning effect, then the alloy can obtain excellent high temperature creep properties.
AFA was developed based on Super304H, HR3C and TP347HFG. The idea is through adjusting the alloying elements, such as Al, N, Si, Ni, V and B, and controlling the feature of nanoscale precipitated phases, to improve high-temperature creep properties at a low cost. Therefore, it is of great significance to summarize and generalize the control methods of precipitates in order to the development and design of aluminum-containing austenitic stainless steel with better creep properties.
In this paper, the control methods of main precipitates in austenitic stainless steel containing aluminum are reviewed, including the regulation of alloying elements and the optimization of thermal mechanical treatment process, and then the relationship between the regulation of precipitates and creep properties is discussed.
Key words:  aluminum-containing austenitic stainless steel    precipitated phase    regulation    creep performance
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TG113  
基金资助: 国家重点研发计划(2018YFE0116200)
通讯作者:  *周张健,北京科技大学材料学院教授、博士研究生导师。1996年在中国地质大学(北京)矿物学专业获硕士学位,2007年在北京科技大学材料学专业获博士学位。主要从事能源系统用先进材料的研究,包括ODS钢、难熔金属、功能梯度材料、绝热材料等。出版教材2部,发表论文200余篇,获授权专利12项。zhouzhj@mater.ustb.edu.cn   
作者简介:  孙钢,2019年6月毕业于太原科技大学,获得工学学士学位。现为北京科技大学材料科学与工程专业硕士研究生,在周张健教授的指导下进行研究。目前主要研究领域为含铝的奥氏体不锈钢。
引用本文:    
孙钢, 熊茹, 唐睿, 张乐福, 周张健. 含铝奥氏体不锈钢的强化相析出调控和蠕变性能研究进展[J]. 材料导报, 2023, 37(9): 21060054-7.
SUN Gang, XIONG Ru, TANG Rui, ZHANG Lefu, ZHOU Zhangjian. Research Progress on Strengthening Phase Precipitation Regulation and Creep Properties of Aluminum-Containing Austenitic Stainless Steel. Materials Reports, 2023, 37(9): 21060054-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060054  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21060054
1 Li X H, Shi L, Liu Y C, et al. Materials Science and Engineering:A, 2020, 772, 138683.
2 Gao Q Z, Jiang Y J, Liu Z Y, et al. Materials Science and Engineering:A, 2020, 779, 139139.
3 Gao Q Z, Wang C, Qu F, et al. Journal of Alloys and Compounds, 2014, 610, 322.
4 Zhao Y N, Guo Q Y, Ma Z Q, et al. Materials Science and Engineering:A, 2020, 791, 139735.
5 Yamamoto Y, Brady M P, Lu Z P, et al. Science, 2007, 316(5823), 433.
6 Brady M P, Yamamoto Y, Santella M L, et al. Jom, 2008, 60(7), 12.
7 Brady M P, Yamamoto Y, Lu Z P, et al. Stainless Steel World, 2008, 936792, 23.
8 Yamamoto Y, Brady M P, Santella M L, et al. Metallurgical and Materials Transactions A, 2010, 42(4), 922.
9 Yamamoto Y, Brady M P, Lu Z P, et al. Metallurgical and Materials Transactions A, 2007, 38(11), 2737.
10 Bei H, Yamamoto Y, Brady M P, et al. Materials Science and Enginee-ring:A, 2010, 527(7-8), 2079.
11 Chen L Z, Zhou Z J, Schroer C. Materials Reports A:Review Papers, 2020, 34(3), 5096 (in Chinese).
陈灵芝, 周张健, Carsten Schroer. 材料导报:综述篇, 2020, 34(3), 5096.
12 Jang M H, Moon J, Kang J Y, et al. Materials Science and Engineering:A, 2015, 647, 163.
13 Jang M H, Kang J Y, Jang J H, et al. Materials Science and Enginee-ring:A, 2017, 696, 70.
14 Sourmail T. Materials Science and Technology, 2013, 17(1), 1.
15 Jang M H, Kang J Y, Jang J H, et al. Materials Science and Enginee-ring:A, 2017, 684, 14.
16 Zhou D Q. Study on precipitation and high temperature deformation behavior of heat-resistant alumina-forming austenitic steels. Ph. D. Thesis, University of Science and Technology Beijing, China, 2015 (in Chinese).
周德强. 新型含铝奥氏体耐热钢相形成规律及高温变形行为研究. 博士学位论文, 北京科技大学, 2015.
17 Powell D J, Pilkington R, Miller D A. Acta Metallurgica, 1988, 36(3), 713.
18 Zhou D Q, Zhao W X, Mao H H, et al. Materials Science and Enginee-ring:A, 2015, 622, 91.
19 Zhao W X, Zhou D Q, Jiang S H, et al. Materials Science and Enginee-ring:A, 2018, 738, 295.
20 Wen D H, Li Z, Jiang B B, et al. Materials Characterization, 2018, 144, 86.
21 Wey M Y, Sakuma T, Nishizawa T. Transactions of the Japan Institute of Metals, 1981, 22, 733.
22 Yutaka W, Hiroaki K. In:ASME/JSME 2004 Pressure Vessels and Piping Conference. California, 2004, pp. 93.
23 Maziasz P J. Jom, 1989, 41(7), 14.
24 Tan J, Liu J, Yuan Z X. Journal of Wuhan University of Science and Technology, 2006(1), 29 (in Chinese).
谭静, 刘静, 袁泽喜. 武汉科技大学学报(自然科学版), 2006(1), 29.
25 Gordon H. In:High Temperature Corrosion and Materials Chemistry 7. Hawaii, 2009, pp. 81.
26 Chen S W, Zhang C, Xia Z X, et al. Materials Science and Engineering:A, 2014, 616, 183.
27 Yamamoto Y, Takeyama M, Lu Z P, et al. Intermetallics, 2008, 16(3), 453.
28 Wen H Y, Zhao B B, Zhou J, et al. Materials Letters, 2020, 283, 128802.
29 Trotter G, Baker I. Philosophical Magazine, 2015, 95(36), 4078.
30 Hu B, Baker I. Materials Letters, 2017, 195, 108.
31 Satyanarayana D, Malakondaiah G, Sarma D S. Materials Characterization, 2001, 47(1), 61.
32 Baker I. Materials Science and Engineering:A, 1995, 192-193, 1.
33 Brady M P, Unocic K A, Lance M J, et al. Oxidation of Metals, 2011, 75(5-6), 337.
34 Brady M P, Yamamoto Y, Santella M L, et al. Oxidation of Metals, 2009, 72(5-6), 311.
35 Xu X, Zhang X, Chen G, et al. Materials Letters, 2011, 65(21), 3285.
36 Wang M, Sun Y D, Feng J K, et al. International Journal of Minerals Metallurgy and Materials, 2016, 23(3), 314.
37 Brady M P, Yamamoto Y, Santella M L, et al. Scripta Materialia, 2007, 57(12), 1117.
38 Yamamoto Y, Santella M L, Brady M P, et al. Metallurgical and Mate-rials Transactions A, 2009, 40(8), 1868.
39 Moon J, Lee T H, Heo Y U, et al. Materials Science and Engineering:A, 2015, 645, 72.
40 Yamamoto Y, Muralidharan G, Brady M P. Scripta Materialia, 2013, 69(11-12), 816.
41 Sudbrack C K, Noebe R D, Ziebell T D, et al. Acta Materialia, 2008, 56(3), 448.
42 Zhao B B, Fan J F, Liu Y Z, et al. Scripta Materialia, 2015, 109, 64.
43 Czeppe T, Wierzbinski S. International Journal of Mechanical Sciences, 2000, 42(8), 1499.
44 Chao C, Gleeson B. Scripta Materialia, 2006, 55(5), 433.
45 Liu W J. Metallurgical and Materials Transactions A, 1995, 26(7), 1641.
46 Wang M. Investigation of microstructural stability and mechanical properties of alumina-forming austenitic steels. Ph. D. Thesis, University of Science and Technology Beijing, China, 2016 (in Chinese).
王曼. 新型奥氏体钢显微组织结构稳定性及力学性能的研究. 博士学位论文, 北京科技大学, 2016.
47 Hu B, Trotter G, Baker I, et al. Metallurgical and Materials Transactions A, 2015, 46(8), 3773.
48 Trotter G, Rayner G, Baker I, et al. Intermetallics, 2014, 53, 120.
49 Meng Q, La P Q, Sa X R. Materials Reports A:Review Papers, 2013, 27(9), 101 (in Chinese).
孟倩, 喇培清, 撒兴瑞. 材料导报:综述篇, 2013, 27(9), 101.
50 Liu Y Z, Dong X P, Zhang L T, et al. Materials for Mechanical Engineering, 2015, 39(4), 86 (in Chinese).
刘一泽, 董显平, 张澜庭, 等. 机械工程材料, 2015, 39(4), 86.
51 Zhao B B, Chang K C, Fan J F, et al. Materials Letters, 2016, 176, 83.
52 Jang M H, Kang J Y, Jang J H, et al. Materials Characterization, 2018, 137, 1.
53 Park H H, Kang J Y, Ha H Y, et al. Journal of Korean Institute of Metals and Materials, 2017, 55(7), 470.
54 Jiang Y J, Gao Q Z, Zhang H L, et al. Materials Science and Enginee-ring:A, 2019, 748, 161.
55 Gao Q Z, Zhang H L, Qu F, et al. Novel aluminum-containing austenitic heat-resistant steel materials, Chemical Industry Press, China, 2020(in Chinese).
高秋志, 张海莲, 屈福, 等. 新型含铝奥氏体耐热钢材料, 化学工业出版社, 2020.
[1] 卢超, 曹建春, 陈伟, 刘星, 张永青, 阴树标. 再加热温度对Nb微合金化钢筋连续冷却相变及组织与性能的影响[J]. 材料导报, 2023, 37(8): 21100016-8.
[2] 谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
[3] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[4] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[5] 史国强, 薛冬峰. 电负性评估稀土离子电荷转移跃迁理论及在量子调控发光中的应用[J]. 材料导报, 2023, 37(3): 22110122-5.
[6] 武素丽, 荀文斐, 张淑芬. 稀土氟化物上转换纳米晶尺寸调控的研究进展[J]. 材料导报, 2023, 37(3): 22110116-8.
[7] 王玉龙, 王周福, 王玺堂, 刘浩, 马妍. 连铸用铝碳耐火材料微结构调控研究进展[J]. 材料导报, 2023, 37(1): 20090128-10.
[8] 梁泽芬, 林小军, 纳仁花, 牛玉艳, 王亮. 单层石墨烯电子结构的调控策略和对接的研究进展[J]. 材料导报, 2022, 36(Z1): 22020133-6.
[9] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[10] 姚亿文, 杨飞跃, 赵爽, 陈国兵, 李昆锋, 杨自春. 新型陶瓷涂层的制备、结构调控及应用研究进展[J]. 材料导报, 2022, 36(23): 21010029-7.
[11] 康靓, 王堃, 敬学锐, 王煜烨, 王世伟, 孙鑫, 肖旅, 周海涛. 镁基材料中Mg2Si相调控技术的研究进展[J]. 材料导报, 2022, 36(22): 22030308-7.
[12] 李帅贞, 韩晓辉, 吴来军, 刘裕航, 王鹏, 宋晓国, 檀财旺. 层道排布对6005A铝合金MIG焊接头微观组织及力学性能的影响[J]. 材料导报, 2022, 36(17): 21060094-5.
[13] 惠冰, 李扬, 张炎棣, 杨心怡. 水性环氧乳化沥青固化-破乳速率调控效能及作用机理[J]. 材料导报, 2022, 36(16): 22050008-6.
[14] 郭靖, 孟永强, 孙金峰, 张少飞. 高导热金刚石/铜复合材料的制备与界面调控研究进展[J]. 材料导报, 2022, 36(15): 20090233-7.
[15] 侯磊, 韩学锋, 邢宝林, 曾会会, 王振帅, 郭晖, 张传祥, 谌伦建. 天然矿物为模板制备功能炭材料的研究进展[J]. 材料导报, 2022, 36(12): 20080165-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed