Research Progress on Strengthening Phase Precipitation Regulation and Creep Properties of Aluminum-Containing Austenitic Stainless Steel
SUN Gang1, XIONG Ru2, TANG Rui2, ZHANG Lefu3, ZHOU Zhangjian1,*
1 School of Materials Science and Engineering, University of Science & Technology Beijing, Beijing 100083, China 2 Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China 3 School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract: According to China's energy structure, the development of ultra-supercritical thermal power plants and advanced nuclear energy with high efficiency is an effective way to solve the contradiction between energy shortage and environmental pollution. In order to meet the requirement of long term service in the harsh environment of high temperature, high pressure and corrosive medium, it is urgent to develop new grade material with improved high temperature mechanical properties and oxidation resistance. The newly developed aluminum forming austenitic (AFA) stainless steel shows excellent oxidation resistance and high temperature strength, which is considered as a promising candidate material for key components of advanced energy systems such as ultra-supercritical power plants and supercritical water-cooled reactor. Creep is an important service property for AFA steels application in advanced energy systems, which is closely related to the feature of precipitated phases (including M23C6 and MC carbide, Laves phase, NiAl phase and FeCr phase), including phase type, size and distribution of precipitates. If the precipitates with good high temperature stability can be controlled to disperse uniformly in the matrix with appropriate size for dislocation pinning effect, then the alloy can obtain excellent high temperature creep properties. AFA was developed based on Super304H, HR3C and TP347HFG. The idea is through adjusting the alloying elements, such as Al, N, Si, Ni, V and B, and controlling the feature of nanoscale precipitated phases, to improve high-temperature creep properties at a low cost. Therefore, it is of great significance to summarize and generalize the control methods of precipitates in order to the development and design of aluminum-containing austenitic stainless steel with better creep properties. In this paper, the control methods of main precipitates in austenitic stainless steel containing aluminum are reviewed, including the regulation of alloying elements and the optimization of thermal mechanical treatment process, and then the relationship between the regulation of precipitates and creep properties is discussed.
1 Li X H, Shi L, Liu Y C, et al. Materials Science and Engineering:A, 2020, 772, 138683. 2 Gao Q Z, Jiang Y J, Liu Z Y, et al. Materials Science and Engineering:A, 2020, 779, 139139. 3 Gao Q Z, Wang C, Qu F, et al. Journal of Alloys and Compounds, 2014, 610, 322. 4 Zhao Y N, Guo Q Y, Ma Z Q, et al. Materials Science and Engineering:A, 2020, 791, 139735. 5 Yamamoto Y, Brady M P, Lu Z P, et al. Science, 2007, 316(5823), 433. 6 Brady M P, Yamamoto Y, Santella M L, et al. Jom, 2008, 60(7), 12. 7 Brady M P, Yamamoto Y, Lu Z P, et al. Stainless Steel World, 2008, 936792, 23. 8 Yamamoto Y, Brady M P, Santella M L, et al. Metallurgical and Materials Transactions A, 2010, 42(4), 922. 9 Yamamoto Y, Brady M P, Lu Z P, et al. Metallurgical and Materials Transactions A, 2007, 38(11), 2737. 10 Bei H, Yamamoto Y, Brady M P, et al. Materials Science and Enginee-ring:A, 2010, 527(7-8), 2079. 11 Chen L Z, Zhou Z J, Schroer C. Materials Reports A:Review Papers, 2020, 34(3), 5096 (in Chinese). 陈灵芝, 周张健, Carsten Schroer. 材料导报:综述篇, 2020, 34(3), 5096. 12 Jang M H, Moon J, Kang J Y, et al. Materials Science and Engineering:A, 2015, 647, 163. 13 Jang M H, Kang J Y, Jang J H, et al. Materials Science and Enginee-ring:A, 2017, 696, 70. 14 Sourmail T. Materials Science and Technology, 2013, 17(1), 1. 15 Jang M H, Kang J Y, Jang J H, et al. Materials Science and Enginee-ring:A, 2017, 684, 14. 16 Zhou D Q. Study on precipitation and high temperature deformation behavior of heat-resistant alumina-forming austenitic steels. Ph. D. Thesis, University of Science and Technology Beijing, China, 2015 (in Chinese). 周德强. 新型含铝奥氏体耐热钢相形成规律及高温变形行为研究. 博士学位论文, 北京科技大学, 2015. 17 Powell D J, Pilkington R, Miller D A. Acta Metallurgica, 1988, 36(3), 713. 18 Zhou D Q, Zhao W X, Mao H H, et al. Materials Science and Enginee-ring:A, 2015, 622, 91. 19 Zhao W X, Zhou D Q, Jiang S H, et al. Materials Science and Enginee-ring:A, 2018, 738, 295. 20 Wen D H, Li Z, Jiang B B, et al. Materials Characterization, 2018, 144, 86. 21 Wey M Y, Sakuma T, Nishizawa T. Transactions of the Japan Institute of Metals, 1981, 22, 733. 22 Yutaka W, Hiroaki K. In:ASME/JSME 2004 Pressure Vessels and Piping Conference. California, 2004, pp. 93. 23 Maziasz P J. Jom, 1989, 41(7), 14. 24 Tan J, Liu J, Yuan Z X. Journal of Wuhan University of Science and Technology, 2006(1), 29 (in Chinese). 谭静, 刘静, 袁泽喜. 武汉科技大学学报(自然科学版), 2006(1), 29. 25 Gordon H. In:High Temperature Corrosion and Materials Chemistry 7. Hawaii, 2009, pp. 81. 26 Chen S W, Zhang C, Xia Z X, et al. Materials Science and Engineering:A, 2014, 616, 183. 27 Yamamoto Y, Takeyama M, Lu Z P, et al. Intermetallics, 2008, 16(3), 453. 28 Wen H Y, Zhao B B, Zhou J, et al. Materials Letters, 2020, 283, 128802. 29 Trotter G, Baker I. Philosophical Magazine, 2015, 95(36), 4078. 30 Hu B, Baker I. Materials Letters, 2017, 195, 108. 31 Satyanarayana D, Malakondaiah G, Sarma D S. Materials Characterization, 2001, 47(1), 61. 32 Baker I. Materials Science and Engineering:A, 1995, 192-193, 1. 33 Brady M P, Unocic K A, Lance M J, et al. Oxidation of Metals, 2011, 75(5-6), 337. 34 Brady M P, Yamamoto Y, Santella M L, et al. Oxidation of Metals, 2009, 72(5-6), 311. 35 Xu X, Zhang X, Chen G, et al. Materials Letters, 2011, 65(21), 3285. 36 Wang M, Sun Y D, Feng J K, et al. International Journal of Minerals Metallurgy and Materials, 2016, 23(3), 314. 37 Brady M P, Yamamoto Y, Santella M L, et al. Scripta Materialia, 2007, 57(12), 1117. 38 Yamamoto Y, Santella M L, Brady M P, et al. Metallurgical and Mate-rials Transactions A, 2009, 40(8), 1868. 39 Moon J, Lee T H, Heo Y U, et al. Materials Science and Engineering:A, 2015, 645, 72. 40 Yamamoto Y, Muralidharan G, Brady M P. Scripta Materialia, 2013, 69(11-12), 816. 41 Sudbrack C K, Noebe R D, Ziebell T D, et al. Acta Materialia, 2008, 56(3), 448. 42 Zhao B B, Fan J F, Liu Y Z, et al. Scripta Materialia, 2015, 109, 64. 43 Czeppe T, Wierzbinski S. International Journal of Mechanical Sciences, 2000, 42(8), 1499. 44 Chao C, Gleeson B. Scripta Materialia, 2006, 55(5), 433. 45 Liu W J. Metallurgical and Materials Transactions A, 1995, 26(7), 1641. 46 Wang M. Investigation of microstructural stability and mechanical properties of alumina-forming austenitic steels. Ph. D. Thesis, University of Science and Technology Beijing, China, 2016 (in Chinese). 王曼. 新型奥氏体钢显微组织结构稳定性及力学性能的研究. 博士学位论文, 北京科技大学, 2016. 47 Hu B, Trotter G, Baker I, et al. Metallurgical and Materials Transactions A, 2015, 46(8), 3773. 48 Trotter G, Rayner G, Baker I, et al. Intermetallics, 2014, 53, 120. 49 Meng Q, La P Q, Sa X R. Materials Reports A:Review Papers, 2013, 27(9), 101 (in Chinese). 孟倩, 喇培清, 撒兴瑞. 材料导报:综述篇, 2013, 27(9), 101. 50 Liu Y Z, Dong X P, Zhang L T, et al. Materials for Mechanical Engineering, 2015, 39(4), 86 (in Chinese). 刘一泽, 董显平, 张澜庭, 等. 机械工程材料, 2015, 39(4), 86. 51 Zhao B B, Chang K C, Fan J F, et al. Materials Letters, 2016, 176, 83. 52 Jang M H, Kang J Y, Jang J H, et al. Materials Characterization, 2018, 137, 1. 53 Park H H, Kang J Y, Ha H Y, et al. Journal of Korean Institute of Metals and Materials, 2017, 55(7), 470. 54 Jiang Y J, Gao Q Z, Zhang H L, et al. Materials Science and Enginee-ring:A, 2019, 748, 161. 55 Gao Q Z, Zhang H L, Qu F, et al. Novel aluminum-containing austenitic heat-resistant steel materials, Chemical Industry Press, China, 2020(in Chinese). 高秋志, 张海莲, 屈福, 等. 新型含铝奥氏体耐热钢材料, 化学工业出版社, 2020.