Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 21100085-10    https://doi.org/10.11896/cldb.21100085
  金属与金属基复合材料 |
电解液配方对纯镁微弧氧化膜层耐蚀性的影响
王占营, 马颖*, 安守静, 孙乐
兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Effect of Electrolyte Formulation on the Corrosion Resistance of Micro-arc Oxidation Coating of Pure Magnesium
WANG Zhanying, MA Ying*, AN Shoujing, SUN Le
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 24352KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于单纯形重心设计改变Na2SiO3、NaOH、KF和NaAlO2四种组分的搭配,在纯镁基体上制备微弧氧化膜层,研究了电解液各组分及其搭配对膜层耐蚀性能的影响。结果表明,拟合得到的回归方程的显著性较好,预测精度高。通过标准化回归系数及帕累托分析可知,KF对膜层点滴及电化学耐蚀性的影响均较大。由响应面分析可知,KF有助于膜层点滴耐蚀性的提高,但高浓度的KF反而不利于电化学耐蚀性的提升。主盐Na2SiO3和NaAlO2可以明显提高膜层的电化学耐蚀性。膜层点滴耐蚀性与电化学耐蚀性的腐蚀机制不同是导致电解质对二者的影响有所区别的根本原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王占营
马颖
安守静
孙乐
关键词:  纯镁  微弧氧化  电解液  单纯形重心设计  回归分析    
Abstract: Based on simplex-centroid mixture design, micro-arc oxidation coatings were prepared on pure magnesium by changing the collocation of Na2SiO3, NaOH, KF and NaAlO2. The effects of electrolyte composition on the corrosion resistance of the coating were studied. The results show that the regression equations are very significant and the prediction accuracy is high. According to the standardized regression coefficient and Pareto analysis, KF has a great influence on the corrosion resistance corresponding to spot test and electrochemical of the coating. The response surface analysis shows that KF can improve the dropping corrosion resistance of the coating. However, high concentration of KF is not conducive to the improvement of electrochemical corrosion resistance. The main salt Na2SiO3 and NaAlO2 can obviously improve the electrochemical corrosion resistance of the coating. It can be seen that the difference in the corrosion mechanism between the spotting and electrochemical corrosion resistance is the primary reason for the difference in the effect of the electrolytes on the two indicators.
Key words:  pure magnesium    micro-arc oxidation    electrolyte    simplex-centroid mixture design    regression analysis
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  TG174.45  
基金资助: 甘肃省创新研究群体计划(1111RJDA011)
通讯作者:  * 马颖,兰州理工大学材料科学与工程学院教授、博士研究生导师。1987年重庆大学本科毕业,1997年甘肃工业大学研究生毕业。1997.9—1999.2新西兰Waikato大学学习,2001.3—2001.6日本JICA项目研修,2005.2—2006.8新西兰Auckland大学访问学者。2009年入选国家新世纪百千万人才工程,2010年入选甘肃省领军人才第一层次,2012年成为国务院政府特殊津贴获得者。主要从事有色金属表面改性与防护、新材料研发和先进成形的科研及应用推广工作。主持并参加近30项国家和省部级科研项目,获省部级科技奖4项,授权发明专利7项。发表论文近100篇,其中40余篇被SCI、EI收录。maying@lut.cn   
作者简介:  王占营,2012年6月毕业于兰州理工大学,获得工学学士学位。现为兰州理工大学材料科学与工程学院博士研究生,在马颖教授的指导下进行研究。目前主要研究领域为轻金属表面改性。
引用本文:    
王占营, 马颖, 安守静, 孙乐. 电解液配方对纯镁微弧氧化膜层耐蚀性的影响[J]. 材料导报, 2023, 37(15): 21100085-10.
WANG Zhanying, MA Ying, AN Shoujing, SUN Le. Effect of Electrolyte Formulation on the Corrosion Resistance of Micro-arc Oxidation Coating of Pure Magnesium. Materials Reports, 2023, 37(15): 21100085-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100085  或          http://www.mater-rep.com/CN/Y2023/V37/I15/21100085
1 Yerokhin A L, Nie X, Leyland A, et al. Surface & Coatings Technology, 1999, 122(2-3), 73.
2 Ren C, Luo J, Chen Y, et al. Materials Review B:Research Papers, 2020, 34(9), 18081(in Chinese).
任超, 罗军明, 陈宇海, 等. 材料导报B:研究篇, 2020, 34(9), 18081.
3 Szkodo M, Stanislawska A, Komarov A, et al. Wear, 2021, 474-475, 203709.
4 Liu C, Lu X, Li Y, et al. Journal of Alloys and Compounds, 2021, 870, 159462.
5 Schneider M, Kremmer K, Höhn S. Materials and Corrosion, 2016, 67(9), 921.
6 Ryu H S, Hong S H. Journal of the Electrochemical Society, 2009, 156(9), C298.
7 Zhuang J J, Guo Y Q, Xiang N, et al. Applied Surface Science, 2015, 357, 1463.
8 Ziyaei E, Atapour M, Edris H, et al. Journal of Materials Engineering and Performance, 2017, 26(7), 3204.
9 Kazanski B, Kossenko A, Zinigrad M, et al. Applied Surface Science, 2013, 287, 461.
10 Vakili-Azghandi M, Fattah-Alhosseini A, Keshavarz M K. Measurement, 2018, 124, 252.
11 Ma N, Huang J, Su J, at al. Materials Review B:Research Papers, 2018, 32(8), 2768(in Chinese).
马妞, 黄佳木, 苏俊, 等. 材料导报B:研究篇, 2018, 32(8), 2768.
12 Guo H F, An M Z. Applied Surface Science, 2005, 246(1), 229.
13 Laveissière M, Gerda H, Roche J, et al. Surface & Coatings Technology, 2019, 361, 50.
14 Veys-Renaux D, Barchiche C E, Rocca E. Surface & Coatings Technology, 2014, 251(8), 232.
15 Chen Y, Yang Y, Zhang T, et al. Surface & Coatings Technology, 2016, 307, 825.
16 Li Y Y, Hu C R. Experiment Design and Data Processing, Chemical Industrial Press, China, 2008, pp. 209 (in Chinese).
李云雁, 胡传荣. 试验设计与数据处理, 化学工业出版社, 2008, pp. 209.
17 Jiao D, Shi C, Yuan Q, et al. Cement and Concrete Composites, 2018, 89, 76.
18 Dias F F G. Castro R J S, Ohara A, et al. Biocatalysis and Agricultural Biotechnology, 2015, 4, 528.
19 Castro R J S. Sato H H. Industrial Crops and Products, 2013, 49, 813.
20 Handa C L, Lima F S, Guelfi M F G, et al. Food Chemistry, 2016, 197, 175.
21 Wang Z, Ma Y, Wang Y. Metals, 2020, 10, 1146.
22 Zulkali M M D, Ahmad A L, Norulakmal N H. Bioresource Technology, 2006, 97(1), 21.
23 Martinello T, Kaneko T M, Velasco M V R, et al. International Journal of Pharmaceutics, 2006, 322(1-2), 87.
24 Zarei M, Niaei A, Salari D, et al. Journal of Hazardous Materials, 2010, 173, 544.
25 Ge Y, Jiang B, Shi H. The Chinese Journal of Nonferrous Metals, 2013, 23(4), 950(in Chinese).
葛延峰, 蒋百灵, 时惠英. 中国有色金属学报, 2013, 23(4), 950.
26 Yerokhin A L, Leyland A, Matthew A. Applied Surface Science, 2000, 200(1), 172.
27 Swaddle T W. Coordination Chemistry Reviews, 2001, 219-221(0), 665.
28 Dong H, Ma Y, Wang S, et al. Rare Metal Materials and Engineering, 2018, 47(1), 249(in Chinese).
董海荣, 马颖, 王晟, 等. 稀有金属材料与工程, 2018, 47(1), 249.
29 Cheng Y, Wu X, Wu F, et al. Journal of Hunan University( Natural Sciences), 2012, 39(10), 60(in Chinese).
程英亮, 吴湘权, 伍帆, 等. 湖南大学学报(自然科学版), 2012, 39(10), 60.
30 Elaish R, Curioni M, Gowers K, et al. Electrochimica Acta, 2017, 245, 854.
31 Mu Y, Liu X, Wang L. Information Sciences, 2018, 435, 40.
32 Chang Y, Yang D, Guo Y, et al. Surface & Coatings Technology, 2018, 353, 339.
33 Pan F, Han W, Wang X, et al. Annals of the Rheumatic Diseases, 2014, 0, 1.
34 Wang Y, Wang Y, Chen P, et al. Acta Metallurgica Sinica, 2011, 47(4), 455(in Chinese).
王艳秋, 王岳, 陈派明, 等. 金属学报, 2011, 47(4), 455.
35 An L, Ma Y, Liu Y, et al. Surface & Coatings Technology, 2018, 354, 226.
[1] 胡时光, 郭鹏凯, 钱韫娴, 张光照, 王军, 邓永红, 王朝阳. 氟代线性碳酸酯对高电压LiNi0.5Co0.2Mn0.3O2/人造石墨软包电池性能的影响[J]. 材料导报, 2023, 37(8): 22050331-7.
[2] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[3] 罗重阳, 李宇杰, 王丹琴, 刘双科, 陈宇方, 郑春满. 改性电解液促进均匀锂沉积的研究进展[J]. 材料导报, 2023, 37(6): 21070209-11.
[4] 杨帅, 刘施峰, 张静, 柳亚辉, 邓超, 祝佳林. 电解液的循环使用对阳极氧化Ta2O5纳米管形貌的影响[J]. 材料导报, 2021, 35(Z1): 112-115.
[5] 赵华星, 孙晓峰, 宋巍, 李占明, 李德民. 微弧氧化技术在铝合金腐蚀防护中的应用研究与发展[J]. 材料导报, 2021, 35(21): 21236-21242.
[6] 浦文婧, 芦伟, 谢凯, 郑春满. 宽温型锂离子电池有机电解液的研究进展[J]. 材料导报, 2020, 34(7): 7036-7044.
[7] 任超, 罗军明, 陈宇海, 黄俊, 徐吉林. 喷丸对TC4合金微弧氧化涂层磨损和腐蚀行为的影响[J]. 材料导报, 2020, 34(18): 18081-18085.
[8] 张贤琳, 王晓琳, 马建威, 李宝娥, 李海鹏, 刘世敏, 梁春永, 王洪水. 钛表面微弧氧化结构和成分对其润湿性的影响[J]. 材料导报, 2019, 33(24): 4035-4039.
[9] 李灵桐, 臧晓蓓, 曹宁. 锌锰二次电池研究进展[J]. 材料导报, 2019, 33(19): 3210-3218.
[10] 王先, 于思荣, 赵严, 张鹏, 刘恩洋, 熊伟. 微弧氧化时间对TA15合金陶瓷膜表面形貌和性能的影响[J]. 材料导报, 2019, 33(12): 2009-2013.
[11] 李振伟, 狄士春. 纳米TiO2微粒对2214铝合金微弧氧化膜微观结构及耐磨性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1294-1299.
[12] 马妞, 黄佳木, 苏俊, 尹凌毅. MgO纳米颗粒对AZ31B镁合金微弧氧化涂层耐磨和耐蚀性的影响[J]. 材料导报, 2018, 32(16): 2768-2772.
[13] 黄文欣, 李军, 徐云鹤. 二氧化锰基超级电容器的研究进展[J]. 材料导报, 2018, 32(15): 2555-2564.
[14] 徐义库,杨 蕾,宋绪丁,陈永楠,爨洛菲,张 朝,郝建民,刘 林. 闭孔泡沫铝微弧氧化及其性能研究[J]. 《材料导报》期刊社, 2018, 32(10): 1655-1658.
[15] 梁存光,李新梅. 基于灰色关联分析与回归分析WC-12Co涂层工艺参数的多目标优化[J]. 《材料导报》期刊社, 2018, 32(10): 1752-1756.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed