Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 21100058-9    https://doi.org/10.11896/cldb.21100058
  高分子与聚合物基复合材料 |
聚烯烃Vitrimer材料的设计、合成和性能
李兴建*, 满孝海, 薛申奥, 王学蕊, 李因文, 徐守芳
临沂大学材料科学与工程学院,山东 临沂 276000
Design, Synthesis and Performance of Polyolefin Vitrimer Materials
LI Xingjian*, MAN Xiaohai, XUE Shen'ao, WANG Xuerui, LI Yinwen, XU Shoufang
School of Materials Science and Engineering, Linyi University, Linyi 276000, Shandong, China
下载:  全 文 ( PDF ) ( 4919KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 当前,为了实现资源的可持续发展和对环境的保护,塑料橡胶制品的回收和再利用是工业界和科研领域十分关注的课题。Vitrimer材料能够在维持交联结构稳定的同时实现网络拓扑结构的重排,将灵活的共价交联网络属性、强健的力学和热力学性能与优异的重复加工性相统一,将分子水平重构及宏观水平重塑的能力结合起来,成为区别于常规热固性材料和热塑性材料的第三类新兴聚合物类型。这种新兴的Vitrimer材料的设计为传统的塑料橡胶制品的回收和再利用开辟了一条新的途径。本文综述了基于工业上广泛应用的聚烯烃材料转化为Vitrimer材料的设计方法,详细介绍了广泛应用的动态β-羟基酯键交换(有机网络酯交换和纳米界面酯交换)和动态B-O键交换(硼酸酯和二醇或酯基的动态酯交换反应、硼酸酯复分解反应和环硼氧烷复分解反应)的动态交换机理及其在设计聚烯烃基Vitrimer材料上的应用,最后对聚烯烃基Vitrimer材料存在的问题进行了分析并对未来研究发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李兴建
满孝海
薛申奥
王学蕊
李因文
徐守芳
关键词:  Vitrimer材料  聚烯烃  动态β-羟基酯键  动态B-O键    
Abstract: At present, to realize the sustainable development of resources and environmental protection, the recycling and reuse of plastic and rubber products is a topic of great concern in the industry and scientific research fields. Vitrimer materials can realize the rearrangement of the network topology while maintaining the stability of the cross-linked structure. It combines flexible covalent cross-linked network properties, strong mechanical and thermodynamic properties with excellent reprocessability. Vitrimer material combines the reconfigurability at the molecular level and remodeling at the macro level, which makes it a third emerging polymer type that is different from conventional thermoset materials and thermoplastic materials. The emergence of this new Vitrimer polymer opens up a new way for the recycling and reuse of traditional plastic and rubber products. This article summarizes the design methods of converting polyolefin materials widely used in industry into Vitrimer polymer materials, and then describes detailedly the dynamic exchange mechanism of the widely used dynamic β-hydroxyester exchange (organic network transesterification and nano-interface transesterification) and dynamic B-O bond exchange (dynamic transesterification of borate and diol or ester groups, borate metathesis, and boroxine metathesis) and its application in the design of polyolefin-based Vitrimer materials. Finally, the problems existing in polyolefin-based Vitrimer polymer materials are analyzed and the future research and development directions are prospected.
Key words:  Vitrimer materials    polyolefin    dynamic β-hydroxy ester bonds    dynamic B-O bonds
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  O631.2  
基金资助: 国家自然科学基金(22275076; 22172070);山东省自然科学基金(ZR2020QE092;ZR2020KE002);山东省高校青年创新项目(2019KJA021);2021国家级大学生创新创业训练计划项目(202110452054)
通讯作者:  * 李兴建,临沂大学讲师。2016年博士毕业于中国科学院成都有机化学研究所,同年进入浙江大学从事博士后研究工作。于2018年任教于临沂大学材料科学与工程学院。主要从事于形状记忆高分子材料的研究。在Advanced Functional Materials、Polymer Chemistry、ACS Applied Polymer Materials、Macromolecular Rapid Communications等期刊发表论文50余篇。lixingjian1314@163.com;   
引用本文:    
李兴建, 满孝海, 薛申奥, 王学蕊, 李因文, 徐守芳. 聚烯烃Vitrimer材料的设计、合成和性能[J]. 材料导报, 2023, 37(15): 21100058-9.
LI Xingjian, MAN Xiaohai, XUE Shen'ao, WANG Xuerui, LI Yinwen, XU Shoufang. Design, Synthesis and Performance of Polyolefin Vitrimer Materials. Materials Reports, 2023, 37(15): 21100058-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100058  或          http://www.mater-rep.com/CN/Y2023/V37/I15/21100058
1 Kloxin C J, Bowman C N. Chemical Society Reviews, 2013, 42(17), 7161.
2 Bowman C N, Prez F D, Kalow J. Polymer Chemistry, 2020, 11(33), 5295.
3 Denissen W, Winne J M, Prez F D. Chemical Science, 2016, 7(1), 30.
4 Montarnal D, Capelot M, Tournilhac F, et al. Science, 2011, 334(6058), 965.
5 Zhang X. Acta Polymerica Sinica, 2016(6), 685 (in Chinese).
张希. 高分子学报, 2016(6), 685.
6 Hubbard A M, Ren Y, Konkolewicz D, et al. ACS Applied Polymer Materials, 2021, 3(4), 1756.
7 Yang Y, Zhang S, Zhang X, et al. Nature Communications, 2019, 10, 3165.
8 Zheng N, Xie T. Acta Polymerica Sinica, 2017, (11), 1715(in Chinese).
郑宁, 谢涛. 高分子学报, 2017, (11), 1715.
9 Liu T, Zhao B, Zhang J. Polymer, 2020, 194, 122392.
10 Bapat A P, Sumerlin B S, Sutti A. Materials Horizons, 2020, 7(3), 694.
11 Zhang H, Wang D, Wu N, et al. ACS Applied Materials & Interfaces, 2020, 12(8), 9833.
12 Tretbar C A, Neal J A, Guan Z. Journal of the American Chemical Society, 2019, 141(42), 16595.
13 Lu Y, Tournilhac F, Leibler L, et al. Journal of the American Chemical Society, 2012, 134(20), 8424.
14 Tellers J, Pinalli R, Soliman M, et al. Polymer Chemistry, 2019, 10(40), 5534.
15 Sarkar S, Banerjee S L, Singha N K. Macromolecular Materials and Engineering, 2021, 306(3), 2000626.
16 Imbernon L, Norvez S, Leibler L. Macromolecules, 2016, 49(6), 2172.
17 Feng Z, Hu J, Zuo H, et al. ACS Applied Materials & Interfaces, 2019, 11(1), 1469.
18 Liu Y, Tang Z, Wu S, et al. ACS Macro Letters, 2019, 8(2), 193.
19 Zhu Y, Gao J, Zhang L, et al. Chinese Journal of Polymer Science, 2021, 39, 201.
20 Salaeh S, Das A, Wießner S, et al. European Polymer Journal, 2021, 151, 110452.
21 Algaily B, Kaewsakul K, Sarkawi S S, et al. Plastics, Rubber and Composites, 2021, 50(7), 1896093.
22 Huang J, Kong S, Tang Z, et al. ACS Macro Letters, 2020, 9(1), 49.
23 Zhang G, Zhou X, Liang K, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(13), 11712.
24 Zhang G, Liang K, Feng H, et al. Industrial & Engineering Chemistry Research, 2020, 59(22), 10447.
25 Kaiser S, Wurzer S, Pilz G, et al. Soft Matter, 2019, 15(30), 6062.
26 Kar G R, Saed M O, Terentjev E M. Journal of Materials Chemistry A, 2020, 8(45), 24137.
27 Ji F, Liu X, Lin C, et al. Macromolecular Materials and Engineering, 2018, 304(3), 1800528.
28 Legrand A, Soulié-Ziakovic C. Macromolecules, 2016, 49(16), 5893.
29 Tang Z, Liu Y, Guo B, et al. Macromolecules, 2017, 50(19), 7584.
30 Cao L, Fan J, Huang J, et al. Journal of Materials Chemistry A, 2019, 7(9), 4922.
31 Qiu M, Wu S, Fang S, et al. Journal of Materials Chemistry A, 2018, 6(28), 13607.
32 Qiu M, Wu S, Tang Z, et al. Composites Science and Technology, 2018, 165, 24.
33 Xu C, Cui R, Fu L, et al. Composites Science and Technology, 2018, 167, 421.
34 Kaiser S, Jandl J, Novak P, et al. Soft Matter, 2020, 16(37), 8577.
35 Liu Y, Tang Z, Chen Y, et al. ACS Applied Materials & Interfaces, 2018, 10(3), 2992.
36 Hayashi M, Yano R. Macromolecules, 2020, 53(1), 182.
37 Aeridou E, Díaz D, Alemán C, et al. Biomacromolecules, 2020, 21(10), 3984.
38 Cho S, Hwang S Y, et al. Journal of Materials Chemistry A, 2021, 9(26), 14630.
39 Zhang X, Zhao Y, Wang S, et al. Materials Chemistry Frontiers, 2021, 5(15), 5534.
40 Röttger M, Domenech T, Weegen R, et al. Science, 2017, 356(6333), 62.
41 Ricarte R G, Tournilhac F, Leibler L. Macromolecules, 2019, 52(2), 432.
42 Ricarte R G, Tournilhac F, Cloître M, et al. Macromolecules, 2020, 53(5), 1852.
43 Wang W, Zha X, Bao R, et al. Journal of Polymer Research, 2021, 28, 210.
44 Breuillac A, Caffy F, Vialon T, et al. Polymer Chemistry, 2020, 11(40), 6479.
45 Yang F, Pan L, Ma Z, et al. Polymer Chemistry, 2020, 11(19), 3285.
46 Chen Y, Tang Z, Zhang X, et al. ACS Applied Materials & Interfaces, 2018, 10(28), 24224.
47 Liu Y, Tang Z, Wang D, et al. Journal of Materials Chemistry A, 2019, 7(47), 26867.
48 Huang Q, Tang Z, Wang D, et al. ACS Macro Letters, 2021, 10(2), 231.
49 Breuillac A, Kassalias A, Nicolay R. Macromolecules, 2019, 52(18), 7102.
50 Chen Y, Tang Z, Liu Y, et al. Macromolecules, 2019, 52(10), 3805.
51 Caffy F, Nicolaÿ R. Polymer Chemistry, 2019, 10(23), 3107.
52 Maaz M, Riba-Bremerch A, Guibert C, et al. Macromolecules, 2021, 54(5), 2213.
53 Brooks W L A, Sumerlin B S. Chemical Reviews, 2016, 116(3), 1375.
54 Guan Y, Zhang Y. Chemical Society Reviews, 2013, 42(20), 8106.
55 Cash J J, Kubo T, Bapat A P, et al. Macromolecules, 2015, 48(7), 2098.
56 Cromwell O R, Chung J, Guan Z. Journal of the American Chemical Society, 2015, 137(20), 6492.
57 Guo H, Yue L, Rui G, et al. Macromolecules, 2020, 53(1), 458.
58 Cheng L, Liu S, Yu W. Polymer, 2021, 222, 123662.
59 Lai J, Mei J, Jia X, et al. Advanced Materials, 2016, 28(37), 8277.
60 Ogden W A, Guan Z. Journal of the American Chemical Society, 2018, 140(20), 6217.
61 Guo Q, Huang B, Lu C, et al. Materials Horizons, 2019, 6(5), 996.
62 Yang Y, Huang H, Wu R, et al. ACS Applied Materials & Interfaces, 2020, 12(29), 33305.
63 Delahaye M, Winne J M, Du Prez F E. Journal of the American Chemical Society, 2019, 141(38), 15277.
[1] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[2] 冯茹, 许雅惠, 韩慧, 黄文峻, 王延斌, 李兴建. 4D打印形状记忆高分子的打印方法、驱动原理、变形模式和应用[J]. 材料导报, 2021, 35(5): 5147-5157.
[3] 罗涛, 马爱洁, 白海燕, 程勇博, 周宏伟. 磁诱导高取向水凝胶的构筑及功能[J]. 材料导报, 2021, 35(5): 5206-5213.
[4] 林进义, 安翔, 白鲁冰, 徐曼, 韦传新, 解令海, 林宗琼, 黄维. 柔性高分子半导体:力学性能和设计策略[J]. 材料导报, 2020, 34(1): 1001-1008.
[5] 丁杰, 赵春霞, 吴凯, 易秀丽, 郑治. 聚乙烯醇/磺化聚醚醚酮/对氨基二苯胺电活性复合膜的制备与性能[J]. 《材料导报》期刊社, 2018, 32(14): 2481-2485.
[6] 林皓, 胡家朋, 刘瑞来, 饶瑞晔. 纤维素纳米纤维接枝聚丙烯酸pH响应水凝胶的制备及性能*[J]. 《材料导报》期刊社, 2017, 31(18): 55-58.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed